RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments

[1]  张静,et al.  Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening , 2015 .

[2]  S. R. Palli RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. , 2014, Current opinion in insect science.

[3]  G. Smagghe,et al.  The immune response of the small interfering RNA pathway in the defense against bee viruses. , 2014, Current opinion in insect science.

[4]  G. Smagghe,et al.  Editorial overview: Pests and resistance - RNAi research in insects. , 2014, Current opinion in insect science.

[5]  Guy Smagghe,et al.  The challenge of RNAi-mediated control of hemipterans. , 2014, Current opinion in insect science.

[6]  L. Stelinski,et al.  Double-Stranded RNA Uptake through Topical Application, Mediates Silencing of Five CYP4 Genes and Suppresses Insecticide Resistance in Diaphorina citri , 2014, PloS one.

[7]  Jay D. Evans,et al.  Israeli Acute Paralysis Virus: Epidemiology, Pathogenesis and Implications for Honey Bee Health , 2014, PLoS pathogens.

[8]  M. A. Melo,et al.  Post-release monitoring: the Brazilian system, its aims and requirements for information , 2014, Transgenic Research.

[9]  O. Christiaens,et al.  DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay , 2014, Peptides.

[10]  G. Smagghe,et al.  Arthropod-Plant Interactions : Novel Insights and Approaches for IPM , 2014 .

[11]  Guy Smagghe,et al.  Towards the elements of successful insect RNAi. , 2013, Journal of insect physiology.

[12]  G. Smagghe,et al.  The possible impact of persistent virus infection on the function of the RNAi machinery in insects: a hypothesis , 2013, Front. Physiol..

[13]  J. Lundgren,et al.  RNAi-Based Insecticidal Crops: Potential Effects on Nontarget Species , 2013 .

[14]  N. Killiny,et al.  Silencing Abnormal Wing Disc Gene of the Asian Citrus Psyllid, Diaphorina citri Disrupts Adult Wing Development and Increases Nymph Mortality , 2013, PloS one.

[15]  Liang Gong,et al.  Testing Insecticidal Activity of Novel Chemically Synthesized siRNA against Plutella xylostella under Laboratory and Field Conditions , 2013, PloS one.

[16]  Jack A Heinemann,et al.  A comparative evaluation of the regulation of GM crops or products containing dsRNA and suggested improvements to risk assessments. , 2013, Environment international.

[17]  D. C. Knipple,et al.  Recent advances in RNA interference research in insects: Implications for future insect pest management strategies , 2013 .

[18]  O. Christiaens,et al.  Delivery of dsRNA for RNAi in insects: an overview and future directions , 2013, Insect science.

[19]  J. Heinemann Response to Heinemann et al on the regulation of GM crops and foods developed using gene silencing , 2013 .

[20]  S. Shafir,et al.  Bidirectional Transfer of RNAi between Honey Bee and Varroa destructor: Varroa Gene Silencing Reduces Varroa Population , 2012, PLoS pathogens.

[21]  Yuan Luo,et al.  The SID-1 double-stranded RNA transporter is not required for systemic RNAi in the migratory locust , 2012, RNA biology.

[22]  B. Bextine,et al.  Advances in RNA interference: dsRNA Treatment in Trees and Grapevines for Insect Pest Suppression , 2012 .

[23]  I. Baldwin,et al.  Tobacco Rattle Virus Vector: A Rapid and Transient Means of Silencing Manduca sexta Genes by Plant Mediated RNA Interference , 2012, PloS one.

[24]  G. Smagghe,et al.  Use of RNAi for Control of Insect Crop Pests , 2012 .

[25]  N. Vodovar,et al.  Of Insects and Viruses , 2012 .

[26]  Gunter Meister,et al.  Small RNAs derived from longer non-coding RNAs. , 2011, Biochimie.

[27]  M. Maffei,et al.  Silencing of Aphid Genes by dsRNA Feeding from Plants , 2011, PloS one.

[28]  Lili Zhu,et al.  Knockdown of Midgut Genes by dsRNA-Transgenic Plant-Mediated RNA Interference in the Hemipteran Insect Nilaparvata lugens , 2011, PloS one.

[29]  Haichao Li,et al.  Second-Generation Sequencing Supply an Effective Way to Screen RNAi Targets in Large Scale for Potential Application in Pest Insect Control , 2011, PloS one.

[30]  Y. Koh,et al.  RNA interference of pheromone biosynthesis-activating neuropeptide receptor suppresses mating behavior by inhibiting sex pheromone production in Plutella xylostella (L.). , 2011, Insect biochemistry and molecular biology.

[31]  R. Ketting The many faces of RNAi. , 2011, Developmental cell.

[32]  S. R. Palli,et al.  Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. , 2011, Pest management science.

[33]  Isabel Gómez,et al.  RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. , 2011, Journal of insect physiology.

[34]  D. vanEngelsdorp,et al.  Large-Scale Field Application of RNAi Technology Reducing Israeli Acute Paralysis Virus Disease in Honey Bees (Apis mellifera, Hymenoptera: Apidae) , 2010, PLoS pathogens.

[35]  Ying-Bo Mao,et al.  Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms , 2010, Transgenic Research.

[36]  Jianzhen Zhang,et al.  Chitosan/double‐stranded RNA nanoparticle‐mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae) , 2010, Insect molecular biology.

[37]  J. Pettis,et al.  Effective Gene Silencing in a Microsporidian Parasite Associated with Honeybee (Apis mellifera) Colony Declines , 2010, Applied and Environmental Microbiology.

[38]  Gunter Meister,et al.  Argonaute proteins at a glance , 2010, Journal of Cell Science.

[39]  Guy Smagghe,et al.  Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. , 2010, Journal of insect physiology.

[40]  D. Steinkraus,et al.  The natural occurrence of Pandora heteropterae (Zygomycetes: Entomophthorales) infecting Lygus lineolaris (Hemiptera: Miridae). , 2010, Journal of invertebrate pathology.

[41]  G. K. Davis,et al.  Genome Sequence of the Pea Aphid Acyrthosiphon pisum , 2010, PLoS biology.

[42]  X. Belles Beyond Drosophila: RNAi in vivo and functional genomics in insects. , 2010, Annual review of entomology.

[43]  P. Rosenkranz,et al.  Biology and control of Varroa destructor. , 2010, Journal of invertebrate pathology.

[44]  F. Aragão,et al.  First transgenic geminivirus-resistant plant in the field , 2009, Nature Biotechnology.

[45]  S. Whyard,et al.  Ingested double-stranded RNAs can act as species-specific insecticides. , 2009, Insect biochemistry and molecular biology.

[46]  Q. Xie,et al.  Developmental Control of a Lepidopteran Pest Spodoptera exigua by Ingestion of Bacteria Expressing dsRNA of a Non-Midgut Gene , 2009, PloS one.

[47]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[48]  S. Shafir,et al.  IAPV, a bee‐affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion , 2009, Insect molecular biology.

[49]  Mikiko C. Siomi,et al.  The Discovery of Rna Interference (rnai) Biogenesis of Small Rnas on the Road to Reading the Rna-interference Code Insight Review , 2022 .

[50]  R. Andino,et al.  Antiviral immunity in Drosophila requires systemic RNA interference spread , 2009 .

[51]  Kazuei Mita,et al.  The genome of a lepidopteran model insect, the silkworm Bombyx mori. , 2009, Insect biochemistry and molecular biology.

[52]  Daniel R. G. Price,et al.  RNAi-mediated crop protection against insects. , 2008, Trends in biotechnology.

[53]  D. Bartel,et al.  The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs , 2008, Nature.

[54]  J. Whangbo,et al.  Environmental RNA interference. , 2008, Trends in genetics : TIG.

[55]  D. Strickman,et al.  Topically Applied AaeIAP1 Double-Stranded RNA Kills Female Adults of Aedes aegypti , 2008, Journal of medical entomology.

[56]  Peer Bork,et al.  The Genome of the Model Beetle and Pest Tribolium Castaneum Vertebrate-specific Orthologues Insect-specific Orthologues Homology Undetectable Similarity , 2022 .

[57]  Zhaojun Han,et al.  Cloning and Phylogenetic Analysis of Sid-1-Like Genes from Aphids , 2008, Journal of insect science.

[58]  M. Adams,et al.  The pheromone biosynthesis activating neuropeptide (PBAN) receptor of Heliothis virescens: Identification, functional expression, and structure–activity relationships of ligand analogs , 2008, Peptides.

[59]  Gregor Bucher,et al.  Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium , 2008, Genome Biology.

[60]  B. Berkhout,et al.  RNA interference against viruses: strike and counterstrike , 2007, Nature Biotechnology.

[61]  Peter M Waterhouse,et al.  RNAi for insect-proof plants , 2007, Nature Biotechnology.

[62]  Jia-Wei Wang,et al.  Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol , 2007, Nature Biotechnology.

[63]  Geert Plaetinck,et al.  Control of coleopteran insect pests through RNA interference , 2007, Nature Biotechnology.

[64]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[65]  C. Lytle,et al.  Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor gene in Spodoptera littoralis larvae. , 2007, Gene.

[66]  Pedro J. Batista,et al.  Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi , 2006, Cell.

[67]  The Chinese Human Genome Sequencing Consortium Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[68]  R. Andino,et al.  The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. , 2006, Genes & development.

[69]  Ying Wang,et al.  Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[70]  R. Newcomb,et al.  RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double‐stranded RNA feeding , 2006, Insect molecular biology.

[71]  T. Pankiw,et al.  SID-I is implicated in systemic gene silencing in the honey bee , 2006 .

[72]  Clive James,et al.  Global status of commercialized biotech/GM crops: 2006. , 2006 .

[73]  Jonathan Preall,et al.  RNAi: RISC Gets Loaded , 2005, Cell.

[74]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[75]  D. Onstad,et al.  Description and analysis of two internet-based databases of insect pathogens: EDWIP and VIDIL. , 2003, Journal of invertebrate pathology.

[76]  A. Dillin The specifics of small interfering RNA specificity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Craig P. Hunter,et al.  Systemic RNAi in C. elegans Requires the Putative Transmembrane Protein SID-1 , 2002, Science.

[78]  Titia Sijen,et al.  On the Role of RNA Amplification in dsRNA-Triggered Gene Silencing , 2001, Cell.

[79]  Q. Wei,et al.  RNAi as Random Degradative PCR siRNA Primers Convert mRNA into dsRNAs that Are Degraded to Generate New siRNAs , 2001, Cell.

[80]  Z. Adelman,et al.  Sindbis virus‐induced silencing of dengue viruses in mosquitoes , 2001, Insect molecular biology.

[81]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[82]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[83]  A. Fire,et al.  Specific interference by ingested dsRNA , 1998, Nature.

[84]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[85]  L. Bailey Honey Bee Pathology , 1981 .