Minimum variance unbiased FIR state estimation of discrete time-variant models

State estimation and tracking often require optimal or unbiased estimators. In this paper, we propose a new minimum variance unbiased (MVU) finite impulse response (FIR) filter which minimizes the estimation error variance in the unbiased FIR (UFIR) filter. The relationship between the filter gains of the MVU FIR, UFIR and optimal FIR (OFIR) filters is found analytically. Simulations provided using a polynomial state-space model have shown that errors in the MVU FIR filter are intermediate between the UFIR and OFIR filters, and the MVU FIR filter exhibits better denoisng effect than the UFIR estimates. It is also shown that the performance of MVU FIR filter strongly depends on the averaging interval of N points: by small N, the MVU FIR filter approaches UFIR filter and, if N is large, it becomes optimal.

[1]  Ali H. Sayed,et al.  A framework for state-space estimation with uncertain models , 2001, IEEE Trans. Autom. Control..

[2]  Peter Willett,et al.  A Low-Complexity Sliding-Window Kalman FIR Smoother for Discrete-Time Models , 2010, IEEE Signal Processing Letters.

[3]  Wook Hyun Kwon,et al.  Optimal FIR filters for time-varying state-space models , 1990 .

[4]  Yuriy S. Shmaliy,et al.  Linear Optimal FIR Estimation of Discrete Time-Invariant State-Space Models , 2010, IEEE Transactions on Signal Processing.

[5]  Pyung-Soo Kim,et al.  A New FIR Filter for State Estimation and Its Application , 2007, Journal of Computer Science and Technology.

[6]  Yuriy S. Shmaliy,et al.  Optimal Memory for Discrete-Time FIR Filters in State-Space , 2014, IEEE Trans. Signal Process..

[7]  Wook Hyun Kwon,et al.  A receding horizon unbiased FIR filter for discrete-time state space models , 2002, Autom..

[8]  A. Jazwinski Limited memory optimal filtering , 1968 .

[9]  Wook Hyun Kwon,et al.  A receding horizon Kalman FIR filter for discrete time-invariant systems , 1999, IEEE Trans. Autom. Control..

[10]  Yuriy S. Shmaliy,et al.  Time‐variant linear optimal finite impulse response estimator for discrete state‐space models , 2012 .

[11]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[12]  Yuriy S. Shmaliy,et al.  Optimal Gains of FIR Estimators for a Class of Discrete-Time State-Space Models , 2008, IEEE Signal Processing Letters.

[13]  W. Kwon,et al.  Receding Horizon Control: Model Predictive Control for State Models , 2005 .

[14]  Dan Simon,et al.  Unified forms for Kalman and finite impulse response filtering and smoothing , 2013, Autom..

[15]  Yuriy S. Shmaliy,et al.  Unbiased FIR Filtering of Discrete-Time Polynomial State-Space Models , 2009, IEEE Transactions on Signal Processing.

[16]  Peter K. Kitanidis,et al.  Unbiased minimum-variance linear state estimation , 1987, Autom..

[17]  Y.S. Shmaliy,et al.  An unbiased FIR filter for TIE model of a local clock in applications to GPS-based timekeeping , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  Yuriy S. Shmaliy,et al.  An Iterative Kalman-Like Algorithm Ignoring Noise and Initial Conditions , 2011, IEEE Transactions on Signal Processing.

[19]  Bart De Moor,et al.  Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough , 2007, Autom..

[20]  Wook Hyun Kwon,et al.  Minimum Variance FIR Smoothers for Discrete-Time State Space Models , 2007, IEEE Signal Processing Letters.

[21]  Yuriy S. Shmaliy,et al.  Suboptimal FIR Filtering of Nonlinear Models in Additive White Gaussian Noise , 2012, IEEE Transactions on Signal Processing.

[22]  Pyung-Soo Kim An alternative FIR filter for state estimation in discrete-time systems , 2010, Digit. Signal Process..

[23]  Wook Hyun Kwon,et al.  FIR filters and recursive forms for discrete-time state-space models , 1987, Autom..

[24]  V. Algazi,et al.  Design of almost minimax FIR filters in one and two dimensions by WLS techniques , 1986 .

[25]  Stephen P. Boyd,et al.  Receding Horizon Control , 2011, IEEE Control Systems.