Isogeometric analysis of the Cahn-Hilliard equation - a convergence study

Herein, we present a numerical convergence study of the Cahn-Hilliard phase-field model within an isogeometric finite element analysis framework. Using a manufactured solution, a mixed formulation of the Cahn-Hilliard equation and the direct discretisation of the weak form, which requires a C 1 -continuous approximation, are compared in terms of convergence rates. For approximations that are higher than second-order in space, the direct discretisation is found to be superior. Suboptimal convergence rates occur when splines of order p = 2 are used. This is validated with a priori error estimates for linear problems. The convergence analysis is completed with an investigation of the temporal discretisation. Second-order accuracy is found for the generalised-α method. This ensures the functionality of an adaptive time stepping scheme which is required for the efficient numerical solution of the Cahn-Hilliard equation. The isogeometric finite element framework is eventually validated by two numerical examples of spinodal decomposition.

[1]  Ignasi Colominas,et al.  Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase‐field averaged descriptions via isogeometric analysis , 2013, International journal for numerical methods in biomedical engineering.

[2]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[3]  Heike Emmerich,et al.  Advances of and by phase-field modelling in condensed-matter physics , 2008 .

[4]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[5]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[6]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[7]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[8]  John W. Cahn,et al.  Phase Separation by Spinodal Decomposition in Isotropic Systems , 1965 .

[9]  Jaemin Shin,et al.  Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation , 2014 .

[10]  Toshiyuki Koyama,et al.  Phase-field modeling of microstructure evolutions in magnetic materials , 2008, Science and technology of advanced materials.

[11]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[12]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .

[13]  Bruce T. Murray,et al.  Approximation of Cahn–Hilliard diffuse interface models using parallel adaptive mesh refinement and coarsening with C1 elements , 2008 .

[14]  David Andrs,et al.  A quantitative comparison between C0 and C1 elements for solving the Cahn-Hilliard equation , 2013, J. Comput. Phys..

[15]  J. Graham-Pole,et al.  Physical , 1998, The Lancet.

[16]  René de Borst,et al.  A numerical assessment of phase-field models for brittle and cohesive fracture: Γ-Convergence and stress oscillations , 2015 .

[17]  Steven M. Wise,et al.  A MIXED DISCONTINUOUS GALERKIN, CONVEX SPLITTING SCHEME FOR A MODIFIED CAHN-HILLIARD EQUATION AND AN EFFICIENT NONLINEAR MULTIGRID SOLVER , 2013 .

[18]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of the Cahn-Hilliard Equation with Convection , 2009, SIAM J. Numer. Anal..

[19]  Ralf Müller,et al.  A continuum phase field model for fracture , 2010 .

[20]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[21]  Markus Apel,et al.  The influence of lattice strain on pearlite formation in Fe–C , 2007 .

[22]  Gustaf Söderlind,et al.  Automatic Control and Adaptive Time-Stepping , 2002, Numerical Algorithms.

[23]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[24]  David Andrs,et al.  Author ' s personal copy A quantitative comparison between C 0 and C 1 elements for solving the Cahn – Hilliard equation , 2013 .

[25]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[26]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[27]  Christian Hesch,et al.  Thermodynamically consistent algorithms for a finite‐deformation phase‐field approach to fracture , 2014 .

[28]  A. Karma,et al.  Phase field modeling of crack propagation , 2010, 1001.4350.

[29]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[30]  Olga Wodo,et al.  Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem , 2011, J. Comput. Phys..

[31]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[32]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[33]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[34]  Krishna Garikipati,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[35]  Dongdong Wang,et al.  An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions , 2010 .

[36]  Philip K. Chan,et al.  A numerical method for the nonlinear Cahn-Hilliard equation with nonperiodic boundary conditions , 1995 .

[37]  B. Blanpain,et al.  An introduction to phase-field modeling of microstructure evolution , 2008 .

[38]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[39]  Hector Gomez,et al.  Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..

[40]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[41]  Kristoffer G. van der Zee,et al.  Numerical simulation of a thermodynamically consistent four‐species tumor growth model , 2012, International journal for numerical methods in biomedical engineering.

[42]  T. M. Shih,et al.  A procedure to debug computer programs , 1985 .

[43]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[44]  Ju Liu,et al.  Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..

[45]  Alfio Quarteroni,et al.  Isogeometric Analysis and error estimates for high order partial differential equations in Fluid Dynamics , 2014 .

[46]  I. Steinbach Phase-field models in materials science , 2009 .

[47]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[48]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[49]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .