Numerical and Experimental Investigations of the Machinability of Ti6AI4V : Energy Efficiency and Sustainable Cooling/ Lubrication Strategies

Titanium alloys are widely utilized in the aerospace, biomedical,marine, petro-chemical and other demanding industries due to theirdurability, high fatigue resistance and ability to sustain elevate ...

[1]  T. Özel,et al.  Investigations on the effects of friction modeling in finite element simulation of machining , 2010 .

[2]  Z. M. Wang,et al.  Titanium alloys and their machinability—a review , 1997 .

[3]  Rishi Singal,et al.  Fundamentals of Machining and Machine Tools , 2008 .

[4]  A. Shih,et al.  Finite element modeling of 3D turning of titanium , 2006 .

[5]  Qing Long An,et al.  An experimental investigation on effects of minimum quantity lubrication oil supply rate in high-speed end milling of Ti–6Al–4V , 2012 .

[6]  Ming Chen,et al.  Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions , 2013 .

[7]  Z. Q. Liu,et al.  Investigation of cutting force and temperature of end-milling Ti–6Al–4V with different minimum quantity lubrication (MQL) parameters , 2011 .

[8]  RaoBendadi Hanumantha,et al.  Optimization and Effect of Process Parameters on Tool Wear in Turning of Titanium Alloy under Different Machining Conditions , 2014 .

[9]  D. Umbrello Finite element simulation of conventional and high speed machining of Ti6Al4V alloy , 2008 .

[10]  H. Onozuka,et al.  Study on orthogonal turning of titanium alloys with different coolant supply strategies , 2009 .

[11]  Z. M. Wang,et al.  The machinability of nickel-based alloys: a review , 1999 .

[12]  Anselmo Eduardo Diniz,et al.  Vibration analysis of cutting force in titanium alloy milling , 2010 .

[13]  Claudio Boer,et al.  The incoming global technological and industrial revolution towards competitive sustainable manufacturing , 2008 .

[14]  Takashi Ueda,et al.  Cutting performance of an indexable insert drill for difficult-to-cut materials under supplied oil mist , 2014 .

[15]  Mahmudur Rahman,et al.  EFFECTS OF COOLANT SUPPLY METHODS AND CUTTING CONDITIONS ON TOOL LIFE IN END MILLING TITANIUM ALLOY , 2006 .

[16]  Uwe Heisel,et al.  Application of minimum quantity cooling lubrication technology in cutting processes , 1994 .

[17]  Guillem Quintana,et al.  Chatter in machining processes: A review , 2011 .

[18]  G. D. Lahoti,et al.  Microstructure-Mechanics Interactions in Modeling Chip Segmentation during Titanium Machining , 2002 .

[19]  P. Sheng,et al.  An analytical approach for determining the environmental impact of machining processes , 1995 .

[20]  Erween Abd Rahim,et al.  A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys , 2011 .

[21]  R. M'Saoubi,et al.  MODELLING OF MATERIAL FLOW STRESS IN CHIP FORMATION PROCESS FROM ORTHOGONAL MILLING AND SPLIT HOPKINSON BAR TESTS , 2005 .

[22]  Paul Mativenga,et al.  Calculation of optimum cutting parameters based on minimum energy footprint , 2011 .

[23]  Wei Xiao Tang,et al.  Prediction of chatter stability in high-speed finishing end milling considering multi-mode dynamics , 2009 .

[24]  David N. Kordonowy,et al.  A power assessment of machining tools , 2002 .

[25]  Ming Chen,et al.  A coupling method of response surfaces (CRSM) for cutting parameters optimization in machining titanium alloy under minimum quantity lubrication (MQL) condition , 2013 .

[26]  Paul Mativenga,et al.  Modelling of direct energy requirements in mechanical machining processes , 2013 .

[27]  Mohammad Sima,et al.  Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V , 2010 .

[28]  Timothy G. Gutowski,et al.  An Environmental Analysis of Machining , 2004 .

[29]  Bin Rong,et al.  Feasibility Study on the Minimum Quantity Lubrication in High-Speed Helical Milling of Ti-6Al-4V , 2012 .

[30]  Paul Mativenga,et al.  Sustainable machining: selection of optimum turning conditions based on minimum energy considerations , 2010 .

[31]  Mohammad Sima,et al.  Investigations on the effects of multi-layered coated inserts in machining Ti–6Al–4V alloy with experiments and finite element simulations , 2010 .

[32]  Toshiyuki Obikawa,et al.  Computer fluid dynamics analysis for efficient spraying of oil mist in finish-turning of Inconel 718 , 2009 .

[33]  Vimal Dhokia,et al.  Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids , 2012 .

[34]  Debasis Chakraborty,et al.  Conjugate heat transfer analysis in high speed flows , 2013 .

[35]  A. G. Jaharah,et al.  Machinalibilty of Ti-6Al-4V Under Dry and Near Dry Condition Using Carbide Tools , 2009 .

[36]  Shi Liang,et al.  Application of conjugate heat transfer and fluid network analysis to improvement design of turbine blade with integrated cooling structures , 2014 .

[37]  Jianfeng Li,et al.  Vibration analysis in milling titanium alloy based on signal processing of cutting force , 2013 .

[38]  Lawrence E. Whitman,et al.  Data collection framework on energy consumption in manufacturing , 2006 .

[39]  Yongsheng Su,et al.  An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V , 2006 .

[40]  Y. Z. Zhang,et al.  Experimental Investigations of the Surface Integrity of Broached Titanium Alloy , 1985 .

[41]  D. Umbrello,et al.  The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel , 2007 .

[42]  Joaquim Ciurana,et al.  Computer Fluid Dynamics Analysis for Efficient Cooling and Lubrication Conditions in Micromilling of Ti6Al4V Alloy , 2014 .

[43]  M. Kumar,et al.  Finite element simulations of Ti6Al4V titanium alloy machining to assess material model parameters of the Johnson-Cook constitutive equation , 2011 .

[44]  Aldo Attanasio,et al.  Minimal quantity lubrication in turning: Effect on tool wear , 2006 .

[45]  Makoto Fujishima,et al.  A study on energy efficiency improvement for machine tools , 2011 .

[46]  S. Rhim,et al.  Prediction of serrated chip formation in metal cutting process with new flow stress model for AISI 1045 steel , 2006 .

[47]  Lars Pejryd,et al.  Machining Aerospace Materials with Room-Temperature and Cooled Minimal-Quantity Cutting Fluids , 2011 .

[48]  Walter Lindolfo Weingaertner,et al.  Analysis of temperature during drilling of Ti6Al4V with minimal quantity of lubricant , 2006 .

[49]  Tuğrul Özel,et al.  Journal of Materials Processing Technology Computational Modelling of 3d Turning: Influence of Edge Micro-geometry on Forces, Stresses, Friction and Tool Wear in Pcbn Tooling , 2022 .

[50]  Neil Canter,et al.  The Possibilities and Limitations of DRY MACHINING , 2003 .

[51]  Seok-Woo Lee,et al.  Eco-friendly face milling of titanium alloy , 2014 .

[52]  Christoph Herrmann,et al.  An Investigation into Fixed Energy Consumption of Machine Tools , 2011 .

[53]  Janez Kopac,et al.  Achievements of sustainable manufacturing by machining , 2009 .

[54]  Joaquim Ciurana,et al.  Analyzing effects of cooling and lubrication conditions in micromilling of Ti6Al4V , 2015 .

[55]  A. Pramanik Problems and solutions in machining of titanium alloys , 2014 .

[56]  P. Oxley,et al.  A Mechanics of Machining Approach to Assessing Machinability , 1982 .

[57]  Berend Denkena,et al.  Velocity effects in metal forming and machining processes , 2011 .