An experimentally optimized PEM fuel cell model using PSO algorithm

This paper presents a semi-empirical fuel cell model with parameters identified using an optimization approach. The Proton Exchange Membrane Fuel Cell (PEMFC) model is characterized by technological and empirical parameters and their identification is a hard task if is intended to have precise simulation results in a wide range of operating conditions. It is verified that the Particle Swarm Optimization (PSO) method is an adequate tool to extract the correct parameter values. This is achieved minimizing the difference between experimental and simulated results. Both PEMFC model and PSO algorithm are implemented in Matlab/Simulink software.

[1]  Luciane Neves Canha,et al.  An electrochemical-based fuel-cell model suitable for electrical engineering automation approach , 2004, IEEE Transactions on Industrial Electronics.

[2]  Biao Zhou,et al.  A general model of proton exchange membrane fuel cell , 2008 .

[3]  Sadik Kakac,et al.  Two‐dimensional model for proton exchange membrane fuel cells , 1998 .

[4]  Hongtan Liu,et al.  A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model , 2001 .

[5]  J. C. Amphlett,et al.  A model predicting transient responses of proton exchange membrane fuel cells , 1996 .

[6]  W. Ongsakul,et al.  Optimal multi-distributed generation placement by adaptive weight particle swarm optimization , 2008, 2008 International Conference on Control, Automation and Systems.

[7]  Richard E. Haskell,et al.  Enhancing performance of PSO with automatic parameter tuning technique , 2009, 2009 IEEE Swarm Intelligence Symposium.

[8]  Lin Wang,et al.  A parametric study of PEM fuel cell performances , 2003 .

[9]  S. Yuvarajan,et al.  Electronic circuit model for proton exchange membrane fuel cells , 2005 .

[10]  Yoshikazu Fukuyama,et al.  A hybrid particle swarm optimization for distribution state estimation , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[11]  A. T. de Almeida,et al.  A new parameter extraction method for accurate modeling of PEM fuel cells , 2009 .

[12]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[13]  D.M. Hanna,et al.  Particle Swarm Optimization for classification of breast cancer data using single and multisurface methods of data separation , 2007, 2007 IEEE International Conference on Electro/Information Technology.

[14]  A. T. de Almeida,et al.  A parameter optimized model of a Proton Exchange Membrane fuel cell including temperature effects , 2008 .

[15]  Bo Yang,et al.  Survey on Applications of Particle Swarm Optimization in Electric Power Systems , 2007, 2007 IEEE International Conference on Control and Automation.

[16]  S. Rael,et al.  Mathematical model and characterization of the transient behavior of a PEM fuel cell , 2004, IEEE Transactions on Power Electronics.

[17]  Marcelo Godoy Simões,et al.  Simulation of fuel-cell stacks using a computer-controlled power rectifier with the purposes of actual high-power injection applications , 2003 .

[18]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.