Bridging Zirconia Nodes within a Metal-Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires.

Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis, and difference envelope density analysis, with electron microscopy imaging and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiOxHy clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield heterobimetallic metal-oxo nanowires. This bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering resistance of these clusters during the hydrogenation of light olefins.

[1]  M. A. Ortuño,et al.  Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature , 2016, ACS central science.

[2]  J. Hupp,et al.  Regioselective Atomic Layer Deposition in Metal-Organic Frameworks Directed by Dispersion Interactions. , 2016, Journal of the American Chemical Society.

[3]  J. Hupp,et al.  Structural Transitions of the Metal-Oxide Nodes within Metal-Organic Frameworks: On the Local Structures of NU-1000 and UiO-66. , 2016, Journal of the American Chemical Society.

[4]  J. Hupp,et al.  Synthetic Access to Atomically Dispersed Metals in Metal-Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach , 2016 .

[5]  J. Hupp,et al.  Chemical, thermal and mechanical stabilities of metal–organic frameworks , 2016 .

[6]  Omar K Farha,et al.  Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework. , 2016, Journal of the American Chemical Society.

[7]  M. Balasubramanian,et al.  State of Supported Nickel Nanoparticles during Catalysis in Aqueous Media. , 2015, Chemistry.

[8]  Omar K Farha,et al.  Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal-Organic Framework via Atomic Layer Deposition. , 2015, ACS nano.

[9]  Alex B. F. Martinson,et al.  Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition , 2015 .

[10]  Michael J. Katz,et al.  Destruction of chemical warfare agents using metal-organic frameworks. , 2015, Nature materials.

[11]  Jingyun Ye,et al.  Design of Lewis Pair-Functionalized Metal Organic Frameworks for CO2 Hydrogenation , 2015 .

[12]  Joshua Borycz,et al.  Defining the Proton Topology of the Zr6-Based Metal-Organic Framework NU-1000. , 2014, The journal of physical chemistry letters.

[13]  Mario Wriedt,et al.  Study of Guest Molecules in Metal–Organic Frameworks by Powder X-ray Diffraction: Analysis of Difference Envelope Density , 2014 .

[14]  François-Xavier Coudert,et al.  Correlated Defect Nano-Regions in a Metal–Organic Framework , 2014, Nature Communications.

[15]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[16]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .

[17]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[18]  Hong‐Cai Zhou,et al.  Generation and applications of structure envelopes for porous metal‒organic frameworks , 2013 .

[19]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[20]  E. Bylaska,et al.  Near-Quantitative Agreement of Model-Free DFT-MD Predictions with XAFS Observations of the Hydration Structure of Highly Charged Transition-Metal Ions. , 2012, The journal of physical chemistry letters.

[21]  K. Chapman,et al.  Elucidating the domain structure of the cobalt oxide water splitting catalyst by X-ray pair distribution function analysis. , 2012, Journal of the American Chemical Society.

[22]  Marcin Wojdyr,et al.  Fityk: a general-purpose peak fitting program , 2010 .

[23]  J. Rehr,et al.  Parameter-free calculations of X-ray spectra with FEFF9. , 2010, Physical chemistry chemical physics : PCCP.

[24]  Seung Min Kim,et al.  Genesis and Evolution of Surface Species during Pt Atomic Layer Deposition on Oxide Supports Characterized by in Situ XAFS Analysis and Water−Gas Shift Reaction , 2010 .

[25]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[26]  L. McCusker,et al.  Using electron microscopy to complement X-ray powder diffraction data to solve complex crystal structures. , 2009, Chemical communications.

[27]  J. Hanson,et al.  A versatile sample‐environment cell for non‐ambient X‐ray scattering experiments , 2008 .

[28]  M. Calleja,et al.  Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6] , 2008, Science.

[29]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[31]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[32]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[33]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[34]  Simon J. L. Billinge,et al.  PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data , 2004 .

[35]  P. Dutta,et al.  The MRCAT insertion device beamline at the Advanced Photon Source , 2001 .

[36]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[37]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[38]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[39]  A. L. Bail Modelling the silica glass structure by the Rietveld method , 1995 .

[40]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[41]  K. B. Wiberg Ab Initio Molecular Orbital Theory by W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, John Wiley, New York, 548pp. Price: $79.95 (1986) , 1986 .