A Polynomial-Time Algorithm for Optimizing over N-Fold 4-Block Decomposable Integer Programs

In this paper we generalize N-fold integer programs and two-stage integer programs with N scenarios to N-fold 4-block decomposable integer programs. We show that for fixed blocks but variable N, these integer programs are polynomial-time solvable for any linear objective. Moreover, we present a polynomial-time computable optimality certificate for the case of fixed blocks, variable N and any convex separable objective function. We conclude with two sample applications, stochastic integer programs with second-order dominance constraints and stochastic integer multi-commodity flows, which (for fixed blocks) can be solved in polynomial time in the number of scenarios and commodities and in the binary encoding length of the input data. In the proof of our main theorem we combine several non-trivial constructions from the theory of Graver bases. We are confident that our approach paves the way for further extensions.

[1]  Andreas S. Schulz,et al.  An oracle-polynomial time augmentation algorithm for integer programming , 1999, SODA '99.

[2]  Raymond Hemmecke,et al.  A polynomial oracle-time algorithm for convex integer minimization , 2007, Math. Program..

[3]  Jesús A. De Loera,et al.  N-fold integer programming , 2006, Discret. Optim..

[4]  Seth Sullivant,et al.  A finiteness theorem for Markov bases of hierarchical models , 2007, J. Comb. Theory, Ser. A.

[5]  Kazuo Murota,et al.  Optimality criterion for a class of nonlinear integer programs , 2004, Oper. Res. Lett..

[6]  Raymond Hemmecke,et al.  On the positive sum property and the computation of Graver test sets , 2003, Math. Program..

[7]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[8]  Bernd Sturmfels,et al.  Primitive partition identities , 1995 .

[9]  Bernd Sturmfels,et al.  Higher Lawrence configurations , 2003, J. Comb. Theory, Ser. A.

[10]  Raymond Hemmecke,et al.  Finiteness Theorems in Stochastic Integer Programming , 2007, Found. Comput. Math..

[11]  Paul D. Seymour,et al.  Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.

[12]  Warren B. Powell,et al.  Dynamic-Programming Approximations for Stochastic Time-Staged Integer Multicommodity-Flow Problems , 2006, INFORMS J. Comput..

[13]  Shmuel Onn,et al.  Theory and Applications of N-Fold Integer Programming , 2009, ArXiv.

[14]  Rüdiger Schultz,et al.  A note on second-order stochastic dominance constraints induced by mixed-integer linear recourse , 2011, Math. Program..

[15]  James R. Luedtke New Formulations for Optimization under Stochastic Dominance Constraints , 2008, SIAM J. Optim..

[16]  Raymond Hemmecke,et al.  Decomposition of test sets in stochastic integer programming , 2003, Math. Program..

[17]  R. Weismantel,et al.  Convex integer maximization via Graver bases , 2006 .

[18]  Jack E. Graver,et al.  On the foundations of linear and integer linear programming I , 1975, Math. Program..

[19]  Hossein Soroush,et al.  The stochastic multicommodity flow problem , 1990, Networks.

[20]  Uriel G. Rothblum,et al.  Convex Combinatorial Optimization , 2003, Discret. Comput. Geom..