Hole scattering mechanisms in Hg1−xCdxTe

In this paper, we analyze and discuss the roles of nine different scattering mechanisms—ionized impurity, polar and nonpolar optical, acoustic, dislocation, strain field, alloy disorder, neutral impurity, and piezoelectric—in limiting the hole mobilities in p-type Hg1−xCdxTe crystals. The analysis is based on obtaining a good fit between theory and experiment for the light and heavy hole drift mobilities by optimizing certain unknown (or at the most vaguely known) material parameters such as the heavy hole mobility effective mass, degree of compensation, and the dislocation and strain field scattering strengths. For theoretical calculations, we have adopted the relaxation time approach, keeping in view its inadequacy for the polar scattering. The energy dispersive hole relaxation times have been drawn from the published literature that take into account the p-symmetry of valence band wave functions. The temperature dependencies of multiple charge states of impurities and of Debye screening length have been taken into account through a numerical calculation for the Fermi energy. Mobility data for the present analysis have been selected from the HgCdTe literature to represent a wide range of material characteristics (x=0.2–0.4, p=3×1015–1×1017 cm−3 at 77K, μpeak≅200-1000cm2V−1s−1). While analyzing the light hole mobility, the acoustic deformation and neutral impurity potentials were also treated as adjustable. We conclude that• the heavy hole mobility is largely governed by the ionized impurity scattering, unless the strain field or dislocation scattering below 50K, or the polar scattering above 200K, become dominant;• the light hole mobility is mainly governed by the acoustic phonon scattering, except at temperatures below 30K where the neutral impurity, strain field and dislocation scattering also become significant;• the intervalence scattering transitions make negligible impact on the heavy hole mobility, but virtually limit the light hole mobility;• the alloy disorder scattering does not dominate in any temperature region, although it exercises some influence at intermediate temperatures;• the heavy hole mobility effective mass ratio mhh/mo∼-0.28–0.33 for crystals with x<0.4; and• the light hole band deformation potential constant is ∼12 eV.

[1]  A. W. Vere,et al.  Tellurium precipitation in bulk‐grown CdxHg1−xTe , 1986 .

[2]  J. Mroczkowski,et al.  Optical absorption below the absorption edge in Hg1−xCdxTe , 1983 .

[3]  B. Nag,et al.  Electron transport in compound semiconductors , 1980 .

[4]  Victor F. Weisskopf,et al.  Theory of Impurity Scattering in Semiconductors , 1950 .

[5]  J. Kossut The disorder scattering in zincblende narrow-gap semiconducting mixed crystals , 1978 .

[6]  C. Fau,et al.  Recombination processes in 3 to 5 μm HgCdTe , 1981 .

[7]  F. Buch,et al.  Influence of dislocations on electrical conductivity of CdTe , 1974 .

[8]  J. Thompson,et al.  Metal–organic chemical vapor deposition of mercury cadmium telluride epitaxial films , 1986 .

[9]  A. Sher,et al.  Carrier transport properties of p‐type Hg1−xCdxTe liquid phase epitaxial layers in the mixed conduction range , 1985 .

[10]  Daniel L. Rode,et al.  Electron Mobility in II-VI Semiconductors , 1970 .

[11]  Y. Guldner,et al.  Magnetooptical Investigation of Hg1-xCdxTe Mixed Crystals. I. Semimetallic Configuration , 1977 .

[12]  N. Sclar Ionized Impurity Scattering in Nondegenerate Semiconductors , 1956 .

[13]  D. B. Holt Filled and Empty Dangling Bonds in III‐V Compounds , 1960 .

[14]  C. Erginsoy Neutral Impurity Scattering in Semiconductors , 1950 .

[15]  L. Lou,et al.  Hall effect and resistivity in liquid‐phase‐epitaxial layers of HgCdTe , 1984 .

[16]  Y. Guldner,et al.  Magnetooptical Investigation of Hg1‐xCdxTe Mixed Crystals II.Semiconducting Configuration and Semimetal → Semiconductor Transition , 1977 .

[17]  S. Krishnamurthy,et al.  Generalized Brooks’ formula and the electron mobility in SixGe1−x alloys , 1985 .

[18]  S. Narita,et al.  Far‐Infrared Interband Magnetoabsorption and Band Structure of Hg1−xCdxTe Alloys , 1976 .

[19]  J. W. Mcclure,et al.  Statistics of the Occupation of Dislocation Acceptors (One‐Dimensional Interaction Statistics) , 1960 .

[20]  M. C. Chen,et al.  The temperature dependence of the anomalous Hall effects in p‐type HgCdTe , 1989 .

[21]  M. Glicksman,et al.  Disorder scattering in solid solutions of III–V semiconducting compounds , 1973 .

[22]  A. Sher,et al.  Anomalous Hall effect in p‐type Hg1−xCdxTe liquid‐phase‐epitaxial layers , 1987 .

[23]  W. Read CXXIV. Statistics of the occupation of dislocation acceptor centres , 1954 .

[24]  H. Gatos,et al.  Antimony Edge Dislocations in InSb , 1961 .

[25]  B. Pödör Electron Mobility in Plastically Deformed Germanium , 1966 .

[26]  L. Reggiani,et al.  Scattering probabilities for holes. II. Polar optical scattering mechanism , 1973 .

[27]  M. Chen,et al.  Electrical properties of antimony-doped p-type Hg0.78Cd0•22Te liquid-phase-epitaxy films , 1986 .

[28]  A. Tweet Electrical Properties of Plastically Deformed Germanium , 1955 .

[29]  J. Schmit,et al.  Calculation of intrinsic carrier concentration in Hg1−xCdxTe , 1983 .

[30]  W. Schröter Die elektrischen Eigenschaften von Versetzungen in Germanium , 1967 .

[31]  J. Tregilgas,et al.  Lattice defects in (Hg,Cd)Te: Investigations of their nature and evolution , 1983 .

[32]  E. Kane,et al.  Energy band structure in p-type germanium and silicon , 1956 .

[33]  F. Blatt,et al.  Physics of Electronic conduction in Solids , 1968 .

[34]  E. Finkman Determination of band‐gap parameters of Hg1−xCdxTe based on high‐temperature carrier concentration , 1983 .

[35]  T. Harman,et al.  Interband magnetoreflection of Hg1 − χCdχTe , 1971 .

[36]  R. Mueller,et al.  Alpha and Beta Grain Boundaries in Indium Antimonide , 1962 .

[37]  W. Read XVI. Scattering of electrons by charged dislocations in semiconductors , 1955 .

[38]  W. Shockley Some Predicted Effects of Temperature Gradients on Diffusion in Crystals , 1953 .

[39]  J. Franc,et al.  Surface properties of p‐Hg1−xCdxTe , 1991 .

[40]  W. Read LXXXVII. Theory of dislocations in germanium , 1954 .

[41]  J. Calas,et al.  Recombination Processes at Temperatures Lower than 20 K in Hg0.8Cd0.2Te , 1982 .

[42]  J. D. Wiley,et al.  Helicons and Nonresonant Cyclotron Absorption in Semiconductors. II. Hg 1-x Cd x Te , 1969 .

[43]  G. L. Pearson,et al.  Dislocations in Plastically Deformed Germanium , 1954 .

[44]  S. Sen,et al.  Cathodoluminescence and electrical anisotropy from α and β dislocations in plastically deformed gallium arsenide , 1976 .

[45]  C. T. Elliott,et al.  Carrier freeze-out and acceptor energies in p-type Hg1-xCdxTe , 1972 .

[46]  J. G. Mavroides,et al.  Band structure of HgTe and HgTe-CdTe alloys , 1964 .

[47]  Harvey Brooks,et al.  Theory of the Electrical Properties of Germanium and Silicon , 1955 .

[48]  B. Nag,et al.  Mobility of electrons in Hg1−xCdxTe , 1974 .

[49]  R. Grill,et al.  Galvanomagnetic Properties of p-Hg1−xCdxTe , 1988 .

[50]  W. Tennant,et al.  Variable temperature hall effect on p-Hg1−xCdxTe grown on CdTe and sapphire substrates by liquid phase epitaxy , 1985 .

[51]  R. N. Brown,et al.  Interband Magnetoreflection and Band Structure of HgTe , 1967 .

[52]  F. Bartoli,et al.  Majority‐carrier mobility in p‐type Hg1−xCdxTe , 1987 .

[53]  A. I. Elizarov,et al.  Transport Anomalies in CdxHg1−xTe , 1987 .

[54]  B. Pödör Transport coefficients for neutral impurity scattering , 1986 .

[55]  A. Aldea,et al.  Theory of the Hall Effect in Disordered Systems: Impurity-Band Conduction , 1966 .

[56]  Strain scattering of electrons in piezoelectric semiconductors , 1983 .

[57]  N. Sclar Neutral Impurity Scattering in Semiconductors , 1956 .

[58]  O. Caporaletti,et al.  Electrical properties of narrow gap low carrier concentration p-Hg1−xCdxTe , 1982 .

[59]  S. Krishnamurthy,et al.  Electronic and transport properties of HgCdTe and HgZnTe , 1987 .

[60]  M. Gold,et al.  Variable magnetic field Hall effect measurements and analyses of high purity, Hg vacancy (p‐type) HgCdTe , 1986 .

[61]  T. C. Mcgill,et al.  Neutral impurity scattering in semiconductors , 1975 .

[62]  H. Gatos,et al.  Characteristics of the {111} Surfaces of the III–V Intermetallic Compounds , 1961 .

[63]  H. Gatos,et al.  Characteristics of the {111} Surfaces of the III – V Intermetallic Compounds III . The Effects of Surface Active Agents on and the Identification of Antimony Edge Dislocations , 1961 .

[64]  L. Reggiani,et al.  Scattering Probabilities for Holes I. Deformation Potential and Ionized Impurity Scattering Mechanisms , 1973 .

[65]  Michael S. Shur,et al.  Scattering rates for holes near the valence-band edge in semiconductors , 1990 .

[66]  Robert J. Hager,et al.  Electrical and far‐infrared optical properties of p‐type Hg1−xCdxTe , 1976 .

[67]  B. Jensen,et al.  Linear and nonlinear intensity dependent refractive index of Hg1−xCdxTe , 1983 .

[68]  C. T. Elliot,et al.  Electrical transport properties of semiconducting CdxHg1-xTe alloys , 1970 .

[69]  K. Tanikawa,et al.  Minority carrier lifetime in the region close to the interface between the anodic oxide and CdHgTe , 1985 .

[70]  W. Schröter,et al.  Electrical Properties of Dislocations in Ge and Si , 1969 .

[71]  W. Scott,et al.  Anomalous Electrical Properties of p‐Type Hg1−xCdxTe , 1971 .