Finite element analysis of torsional free vibration of adhesively bonded single-lap joints

Abstract Adhesively bonding is a high-speed fastening technique which is suitable for joining advanced lightweight sheet materials that are dissimilar, coated and hard to weld. In this paper, the free torsional vibration characteristics of adhesively bonded single-lap joints are investigated in detail using finite element method. The effectiveness of finite element analysis technique used in the study is validated by experimental tests. The focus of the analysis is to reveal the influence on the torsional natural frequencies and mode shapes of these joints caused by variations in the material properties of adhesives. It is shown that the torsional natural frequencies and the torsional natural frequency ratios of the adhesively bonded single-lap joints increases significantly as the Young′s modulus of the adhesives increase, but only slight changes are encountered for variations of Poisson's ratio. The mode shapes analysis show that the adhesive stiffness has a significant effect on the torsional mode shapes. When the adhesive is relatively soft, the torsional mode shapes at the lap joint are slightly distorted. But when the adhesive is relatively very stiff, the torsional mode shapes at the lap joint are fairly smooth and there is a relatively higher local stiffening effect. The consequence of this is that higher stresses will be developed in the stiffer adhesive than in the softer adhesive.