Effect of thermally induced structural disorder on the chemical durability of International Simple Glass

[1]  S. Kerisit,et al.  Dynamics of self-reorganization explains passivation of silicate glasses , 2018, Nature Communications.

[2]  S. Gin,et al.  Impact of alkali on the passivation of silicate glass , 2018, npj Materials Degradation.

[3]  P. Frugier,et al.  Structure of International Simple Glass and properties of passivating layer formed in circumneutral pH conditions , 2018, npj Materials Degradation.

[4]  D. de Ligny,et al.  Combined Differential scanning calorimetry, Raman and Brillouin spectroscopies: A multiscale approach for materials investigation. , 2018, Analytica chimica acta.

[5]  Jincheng Du,et al.  Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations. , 2018, The Journal of chemical physics.

[6]  Jincheng Du,et al.  Understanding the structural drivers governing glass-water interactions in borosilicate based model bioactive glasses. , 2018, Acta biomaterialia.

[7]  Seong H. Kim,et al.  Effects of fictive temperature on the leaching of soda lime silica glass surfaces , 2017 .

[8]  Marie Collin,et al.  Atom-Probe Tomography, TEM and ToF-SIMS study of borosilicate glass alteration rim: A multiscale approach to investigating rate-limiting mechanisms , 2017 .

[9]  Alexey P. Porfirev,et al.  Polarization conversion when focusing cylindrically polarized vortex beams , 2016, Scientific Reports.

[10]  S. Gin,et al.  Structure and Chemical Durability of Lead Crystal Glass. , 2016, Environmental science & technology.

[11]  P. Frugier,et al.  Glass dissolution rate measurement and calculation revisited , 2016 .

[12]  S. Kerisit,et al.  Glass-water interaction: Effect of high-valence cations on glass structure and chemical durability , 2016 .

[13]  J. Somers,et al.  Self-healing capacity of nuclear glass observed by NMR spectroscopy , 2016, Scientific Reports.

[14]  I. Monnet,et al.  Mono and sequential ion irradiation induced damage formation and damage recovery in oxide glasses: Stopping power dependence of the mechanical properties , 2016 .

[15]  Liping Huang,et al.  In-situ Raman and Brillouin light scattering study of the international simple glass in response to temperature and pressure , 2015 .

[16]  P. Frugier,et al.  Origin and consequences of silicate glass passivation by surface layers , 2015, Nature Communications.

[17]  I. Monnet,et al.  Oxide glass structure evolution under swift heavy ion irradiation , 2014 .

[18]  J. Delaye,et al.  Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation , 2014 .

[19]  John D. Vienna,et al.  Current Understanding and Remaining Challenges in Modeling Long‐Term Degradation of Borosilicate Nuclear Waste Glasses , 2013 .

[20]  P. Frugier,et al.  New Insight into the Residual Rate of Borosilicate Glasses: Effect of S/V and Glass Composition , 2013 .

[21]  T. Charpentier,et al.  Comparison of radiation and quenching rate effects on the structure of a sodium borosilicate glass , 2013 .

[22]  S. Gin,et al.  Influence of lanthanum on borosilicate glass structure: A multinuclear MAS and MQMAS NMR investigation , 2013 .

[23]  K. Mueller,et al.  An international initiative on long-term behavior of high-level nuclear waste glass , 2013 .

[24]  Dominique Massiot,et al.  Elucidation of the Al/Si ordering in Gehlenite Ca2Al2SiO7 by combined 29Si and 27Al NMR spectroscopy / quantum chemical calculations , 2012 .

[25]  S. Gin,et al.  Effect of composition on the short-term and long-term dissolution rates of ten borosilicate glasses of increasing complexity from 3 to 30 oxides , 2012 .

[26]  E. Maugeri,et al.  Calorimetric Study of Glass Structure Modification Induced by α Decay , 2012 .

[27]  T. Charpentier,et al.  Effect of temperature and thermal history on borosilicate glass structure , 2012 .

[28]  Christophe Poinssot,et al.  Long-term Behavior Science: The cornerstone approach for reliably assessing the long-term performance of nuclear waste , 2012 .

[29]  J. Delaye,et al.  Molecular dynamics simulation of radiation damage in glasses , 2011 .

[30]  S. Ispas,et al.  Insight into sodium silicate glass structural organization by multinuclear NMR combined with first-principles calculations , 2011 .

[31]  S. Gin,et al.  Why Do Certain Glasses with a High Dissolution Rate Undergo a Low Degree of Corrosion , 2011 .

[32]  J. Delaye,et al.  Contribution of first‐principles calculations to multinuclear NMR analysis of borosilicate glasses , 2010, Magnetic resonance in chemistry : MRC.

[33]  Georges Calas,et al.  First investigations of the influence of IVB elements (Ti, Zr, and Hf) on the chemical durability of soda-lime borosilicate glasses , 2010 .

[34]  T. Charpentier,et al.  Boron Speciation in Soda-Lime Borosilicate Glasses Containing Zirconium , 2010 .

[35]  Philippe Barboux,et al.  Evidence for a threshold in the biosolubility of aluminosilicate vitreous fibers , 2010 .

[36]  Y. Benino,et al.  Molecular orbital calculation of the Si NMR chemical shift in borosilicates: The effect of boron coordination to SiO4 units , 2009 .

[37]  Patrick Jollivet,et al.  Insight into silicate-glass corrosion mechanisms. , 2008, Nature materials.

[38]  Jean-Eric Lartigue,et al.  SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model , 2008 .

[39]  Y. Yue,et al.  Enthalpy and Anisotropy Relaxation of Glass Fibers , 2008 .

[40]  Y. Yue Characteristic temperatures of enthalpy relaxation in glass , 2008 .

[41]  T. Charpentier,et al.  NMR Study of a Rare-Earth Aluminoborosilicate Glass with Varying CaO-to-Na2O Ratio , 2007 .

[42]  T. Charpentier,et al.  Contribution of 43Ca MAS NMR for probing the structural configuration of calcium in glass , 2007 .

[43]  Peul McMTLLAN Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy , 2007 .

[44]  B. Champagnon,et al.  Influence of thermal history on the structure and properties of silicate glasses , 2006, cond-mat/0610698.

[45]  T. Charpentier,et al.  Influence of glass composition and alteration solution on leached silicate glass structure: A solid-state NMR investigation , 2006 .

[46]  Y. Miura,et al.  A theoretical interpretation of the chemical shift of 29Si NMR peaks in alkali borosilicate glasses , 2004 .

[47]  T. Atake,et al.  Thermochemistry of nuclear waste glasses: an experimental determination , 2001 .

[48]  H. Eckert,et al.  11B{23Na} Rotational echo double resonance NMR: a new approach for studying the spatial cation distribution in sodium borate glasses , 2000 .

[49]  H. Eckert,et al.  Short and Medium Range Order in Sodium Aluminoborate Glasses. 2. Site Connectivities and Cation Distributions Studied by Rotational Echo Double Resonance NMR Spectroscopy , 2000 .

[50]  L. Kump,et al.  CHEMICAL WEATHERING ,A TMOSPHERIC CO 2 , AND CLIMATE , 2000 .

[51]  E. Ratai,et al.  Spatial distributions and chemical environments of cations in single- and mixed alkali borate glasses: Evidence from solid state NMR , 1998 .

[52]  R. A. Robie,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .

[53]  B. Reynard,et al.  A study of SiO2 glass and supercooled liquid to 1950 K via high-temperature Raman spectroscopy , 1994 .

[54]  Rodney C. Ewing,et al.  Chemical corrosion of highly radioactive borosilicate nuclear waste glass under simulated repository conditions , 1990 .

[55]  B. Bunker,et al.  Multinuclear nuclear magnetic resonance and Raman investigation of sodium borosilicate glass structures , 1990 .

[56]  T. Advocat,et al.  Hydrolysis of R7T7 Nuclear Waste Glass in Dilute Media: Mechanisms and Rate as a function of Ph , 1990 .

[57]  T. Gullion,et al.  Rotational-Echo, Double-Resonance NMR , 1989 .

[58]  P. McMillan Structural studies of silicate glasses and melts—applications and limitations of Raman spectroscopy , 1984 .

[59]  D. Matson,et al.  The structure of high-silica alkali-silicate glasses. A Raman spectroscopic investigation , 1983 .

[60]  B. Mysen,et al.  Curve-fitting of Raman spectra of silicate glasses , 1982 .

[61]  Noriyoshi Shibata,et al.  Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3 , 1981 .

[62]  J. M. Stevels,et al.  The structure of borosilicate glasses studied by Raman scattering , 1975 .

[63]  R. Fournier,et al.  The solubility of cristobalite along the three-phase curve, gas plus liquid plus cristobalite , 1962 .