A Flexible C2 Subdivision Scheme on the Sphere: With Application to Biomembrane Modelling

We construct a $C^2$ multiscale approximation scheme for functions defined on the (Riemann) sphere. Based on a three-directional box-spline, a flexible $C^2$ scheme over a valence 3 extraordinary vertex can be constructed. Such a flexible $C^2$ subdivision scheme is known to be impossible for arbitrary valences. The subdivision scheme can be used to model spherical surfaces based on a recursively subdivided tetrahedron, with only valence 3 and 6 vertices in the resulted triangulations. This adds to the toolbox of subdivision methods a high order, high regularity scheme which can be beneficial to scientific computing applications. For instance, the scheme can be used in the numerical solution of the Canham--Helfrich--Evans models for spherical and toroidal biomembranes. Moreover, the characteristic maps of the subdivision scheme endow the underlying simplicial complex with a conformal structure. This in particular means that the special subdivision surfaces constructed here comes with a well-defined harmon...

[1]  Willi Freeden,et al.  Constructive Approximation on the Sphere: With Applications to Geomathematics , 1998 .

[2]  Yonggang Xue,et al.  Jet subdivision schemes on the k-regular complex , 2006, Comput. Aided Geom. Des..

[3]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[4]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[5]  Feng Feng,et al.  Finite element modeling of lipid bilayer membranes , 2006, J. Comput. Phys..

[6]  Denis Zorin,et al.  A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..

[7]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[8]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[9]  Ulrich Reif,et al.  Degree estimates for Ck‐piecewise polynomial subdivision surfaces , 1999, Adv. Comput. Math..

[10]  P. Hacking,et al.  Riemann Surfaces , 2007 .

[11]  U. Reif A degree estimate for subdivision surfaces of higher regularity , 1996 .

[12]  Bin Han,et al.  Noninterpolatory Hermite subdivision schemes , 2004, Math. Comput..

[13]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[14]  Hartmut Prautzsch,et al.  Box Splines , 2002, Handbook of Computer Aided Geometric Design.

[15]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[16]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .

[17]  Aaron F. Bobick,et al.  Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets , 2007, IEEE Transactions on Medical Imaging.

[18]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[19]  Jörg Peters,et al.  Shape characterization of subdivision surfaces--basic principles , 2004, Comput. Aided Geom. Des..

[20]  Sara Grundel,et al.  Multiresolution Analysis on a spherical domain based on a flexible C 2 subdivision scheme over a valence 3 extraordinary vertex , 2010 .

[21]  W. Stuetzle,et al.  HIERARCHICAL COMPUTATION OF PL HARMONIC EMBEDDINGS , 1997 .

[22]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[23]  Jingmin Chen Numerical Methods and Uniquness for the Canham-Helfrich Model of Biomembranes , 2015 .

[24]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[25]  E. Evans,et al.  Bending resistance and chemically induced moments in membrane bilayers. , 1974, Biophysical journal.

[26]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[27]  Jörg Peters,et al.  Lens-shaped surfaces and C2 subdivision , 2009, Computing.

[28]  Pencho Petrushev,et al.  Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..