A Flexible C2 Subdivision Scheme on the Sphere: With Application to Biomembrane Modelling
暂无分享,去创建一个
[1] Willi Freeden,et al. Constructive Approximation on the Sphere: With Applications to Geomathematics , 1998 .
[2] Yonggang Xue,et al. Jet subdivision schemes on the k-regular complex , 2006, Comput. Aided Geom. Des..
[3] Udo Seifert,et al. Configurations of fluid membranes and vesicles , 1997 .
[4] J. Jost. Riemannian geometry and geometric analysis , 1995 .
[5] Feng Feng,et al. Finite element modeling of lipid bilayer membranes , 2006, J. Comput. Phys..
[6] Denis Zorin,et al. A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..
[7] W. Helfrich. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.
[8] P. Canham. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.
[9] Ulrich Reif,et al. Degree estimates for Ck‐piecewise polynomial subdivision surfaces , 1999, Adv. Comput. Math..
[10] P. Hacking,et al. Riemann Surfaces , 2007 .
[11] U. Reif. A degree estimate for subdivision surfaces of higher regularity , 1996 .
[12] Bin Han,et al. Noninterpolatory Hermite subdivision schemes , 2004, Math. Comput..
[13] T. Chan,et al. Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.
[14] Hartmut Prautzsch,et al. Box Splines , 2002, Handbook of Computer Aided Geometric Design.
[15] Jörg Peters,et al. Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.
[16] Joe Warren,et al. Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .
[17] Aaron F. Bobick,et al. Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets , 2007, IEEE Transactions on Medical Imaging.
[18] C. Micchelli,et al. Stationary Subdivision , 1991 .
[19] Jörg Peters,et al. Shape characterization of subdivision surfaces--basic principles , 2004, Comput. Aided Geom. Des..
[20] Sara Grundel,et al. Multiresolution Analysis on a spherical domain based on a flexible C 2 subdivision scheme over a valence 3 extraordinary vertex , 2010 .
[21] W. Stuetzle,et al. HIERARCHICAL COMPUTATION OF PL HARMONIC EMBEDDINGS , 1997 .
[22] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[23] Jingmin Chen. Numerical Methods and Uniquness for the Canham-Helfrich Model of Biomembranes , 2015 .
[24] Peter Schröder,et al. Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.
[25] E. Evans,et al. Bending resistance and chemically induced moments in membrane bilayers. , 1974, Biophysical journal.
[26] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[27] Jörg Peters,et al. Lens-shaped surfaces and C2 subdivision , 2009, Computing.
[28] Pencho Petrushev,et al. Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..