Wavelet analysis and covariance structure of some classes of non-stationary processes

Processes with stationary n-increments are known to be characterized by the stationarity of their continuous wavelet coefficients. We extend this result to the case of processes with stationary fractional increments and locally stationary processes. Then we give two applications of these properties. First, we derive the explicit covariance structure of processes with stationary n-increments. Second, for fractional Brownian motion, the stationarity of the fractional increments of order greater than the Hurst exponent is recovered.

[1]  M. Loève Probability Theory II , 1978 .

[2]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[3]  Howell Tong,et al.  A Theory of Wavelet Representation and Decomposition for a General Stochastic Process , 1996 .

[4]  Ravi Mazumdar,et al.  Wavelet representations of stochastic processes and multiresolution stochastic models , 1994, IEEE Trans. Signal Process..

[5]  Béatrice Pesquet-Popescu Modélisation bidimensionnelle de processus non stationnaires et application à l'étude du fond sous-marin , 1998 .

[6]  Patrick Flandrin,et al.  On the spectrum of fractional Brownian motions , 1989, IEEE Trans. Inf. Theory.

[7]  Elias Masry,et al.  The wavelet transform of stochastic processes with stationary increments and its application to fractional Brownian motion , 1993, IEEE Trans. Inf. Theory.

[8]  Richard A. Silverman,et al.  Locally stationary random processes , 2018, IRE Trans. Inf. Theory.

[9]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[10]  J. Doob Stochastic processes , 1953 .

[11]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[12]  Michel Loève,et al.  Probability Theory I , 1977 .

[13]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[14]  Patrice Abry,et al.  Wavelets for the Analysis, Estimation, and Synthesis of Scaling Data , 2002 .

[15]  Ofer Zeitouni,et al.  On the wavelet transform of fractional Brownian motion , 1991, IEEE Trans. Inf. Theory.

[16]  Integral Representations for Stochastic Processes with n‐th Stationary Increments , 1993 .

[17]  Stamatis Cambanis,et al.  On the continuous wavelet transform of second-order random processes , 1995, IEEE Trans. Inf. Theory.

[18]  Yu. A. Rozanov Spectral Analysis of Abstract Functions , 1959 .

[19]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[20]  S. Mallat,et al.  Adaptive covariance estimation of locally stationary processes , 1998 .

[21]  Jean-Christophe Pesquet,et al.  Multiresolution analysis of a class of nonstationary processes , 1995, IEEE Trans. Inf. Theory.

[22]  N.Ya. Vilenkin,et al.  Generalized Random Processes , 1964 .

[23]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[24]  Ping Wah Wong,et al.  Wavelet decomposition of harmonizable random processes , 1993, IEEE Trans. Inf. Theory.

[25]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[26]  A.H. Tewfik,et al.  Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[27]  Béatrice Pesquet-Popescu Wavelet Packet Decompositions for the Analysis of 2-D Fields with Stationary Fractional Increments , 1999, IEEE Trans. Inf. Theory.

[28]  Jirí Michálek Spectral decomposition of locally stationary random processes , 1986, Kybernetika.

[29]  Jirí Michálek Ergodic properties of locally stationary processes , 1986, Kybernetika.

[30]  Christian Houdré,et al.  Some Distributional Properties of the Continuous Wavelet Transform of Random Processes , 1998, IEEE Trans. Inf. Theory.

[31]  Christian Houdré Linear Fourier and stochastic analysis , 1990 .

[32]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[33]  L. Schwartz Théorie des distributions , 1966 .

[34]  Ravi Mazumdar,et al.  On the correlation structure of the wavelet coefficients of fractional Brownian motion , 1994, IEEE Trans. Inf. Theory.

[35]  Amiel Feinstein,et al.  Applications of harmonic analysis , 1964 .

[36]  B. Picinbono,et al.  Properties and applications of stochastic processes with stationary nth-order increments , 1974, Advances in Applied Probability.

[37]  B. Pesquet-PopescuandP 2D Self-Similar Processes with Stationary Fractional Increments , 1997 .

[38]  Christian Houdré,et al.  A note on the discrete wavelet transform of second-order processes , 2000, IEEE Trans. Inf. Theory.

[39]  Christian Houdré,et al.  Harmonizability,V-boundedness, (2,p)-boundedness of stochastic processes , 1990 .