High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars

Abstract Mars Reconnaissance Orbiter HiRISE images and Opportunity rover observations of the ~22 km wide Noachian age Endeavour Crater on Mars show that the rim and surrounding terrains were densely fractured during the impact crater-forming event. Fractures have also propagated upward into the overlying Burns formation sandstones. Opportunity’s observations show that the western crater rim segment, called Murray Ridge, is composed of impact breccias with basaltic compositions, as well as occasional fracture-filling calcium sulfate veins. Cook Haven, a gentle depression on Murray Ridge, and the site where Opportunity spent its sixth winter, exposes highly fractured, recessive outcrops that have relatively high concentrations of S and Cl, consistent with modest aqueous alteration. Opportunity’s rover wheels serendipitously excavated and overturned several small rocks from a Cook Haven fracture zone. Extensive measurement campaigns were conducted on two of them: Pinnacle Island and Stuart Island. These rocks have the highest concentrations of Mn and S measured to date by Opportunity and occur as a relatively bright sulfate-rich coating on basaltic rock, capped by a thin deposit of one or more dark Mn oxide phases intermixed with sulfate minerals. We infer from these unique Pinnacle Island and Stuart Island rock measurements that subsurface precipitation of sulfate-dominated coatings was followed by an interval of partial dissolution and reaction with one or more strong oxidants (e.g., O2) to produce the Mn oxide mineral(s) intermixed with sulfate-rich salt coatings. In contrast to arid regions on Earth, where Mn oxides are widely incorporated into coatings on surface rocks, our results demonstrate that on Mars the most likely place to deposit and preserve Mn oxides was in fracture zones where migrating fluids intersected surface oxidants, forming precipitates shielded from subsequent physical erosion.

[1]  Kenneth Low Kelly,et al.  Color: Universal Language and Dictionary of Names , 2018 .

[2]  J. Grant,et al.  The Degradational History of Endeavour Crater, Mars , 2016 .

[3]  Kenneth S. Edgett,et al.  Deconvolution of distinct lithology chemistry through oversampling with the Mars Science Laboratory Alpha Particle X-Ray Spectrometer , 2016 .

[4]  R. E. Arvidson,et al.  Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars , 2015, Science.

[5]  R. A. McInroy,et al.  Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data , 2015 .

[6]  J. A. Grant,et al.  Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater , 2015 .

[7]  M. Hinkle Ion Interactions at the Mineral-Water Interface During Biogeochemical Iron and Manganese Cycling , 2015 .

[8]  S. Squyres,et al.  Smectites in the Rim of Endeavour Crater, Mars, Detected Using Along-Track Oversampled CRISM Observations , 2014 .

[9]  B. Ehlmann,et al.  Mineralogy of the Martian Surface , 2014 .

[10]  M. Poelchau,et al.  Structural geology of impact craters , 2014 .

[11]  E. A. Guinness,et al.  Ancient Aqueous Environments at Endeavour Crater, Mars , 2014, Science.

[12]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[13]  J. Catalano Thermodynamic and mass balance constraints on iron‐bearing phyllosilicate formation and alteration pathways on early Mars , 2013 .

[14]  N. Artemieva,et al.  Ries crater and suevite revisited—Observations and modeling Part I: Observations , 2013 .

[15]  E. Pierazzo,et al.  Impact Cratering: Processes and Products , 2012 .

[16]  R. E. Arvidson,et al.  Ancient Impact and Aqueous Processes at Endeavour Crater, Mars , 2012, Science.

[17]  P. Taskinen,et al.  Thermodynamic modelling of aqueous Fe(II) sulfate solutions , 2011 .

[18]  J. Majzlan,et al.  Internally consistent thermodynamic data for metal divalent sulphate hydrates , 2011 .

[19]  William H. Farrand,et al.  Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater , 2011 .

[20]  Jeffrey R. Johnson,et al.  Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater , 2010 .

[21]  Jeffrey R. Johnson,et al.  Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping , 2010 .

[22]  J. Majzlan,et al.  Internally consistent thermodynamic data for magnesium sulfate hydrates , 2009 .

[23]  J. K. Crowley,et al.  Modeling aluminum–silicon chemistries and application to Australian acidic playa lakes as analogues for Mars , 2009 .

[24]  G. Marion,et al.  Modeling aqueous perchlorate chemistries with applications to Mars , 2009 .

[25]  K. Emmerich,et al.  Clay profiling: The classification of montmorillonites , 2009 .

[26]  K. Emmerich,et al.  A comprehensive characterization of dioctahedral smectites , 2009 .

[27]  W. Broecker,et al.  Rock varnish evidence for latest Pleistocene millennial-scale wet events in the drylands of western United States , 2008 .

[28]  C. Bethke Geochemical and Biogeochemical Reaction Modeling , 2007 .

[29]  S. McLennan,et al.  Application of the Pitzer ion interaction model to isopiestic data for the Fe2(SO4)3-H2SO4-H2O system at 298.15 and 323.15 K , 2007 .

[30]  Raymond E. Arvidson,et al.  Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .

[31]  John F. Mustard,et al.  Detection and discrimination of sulfate minerals using reflectance spectroscopy , 2006 .

[32]  G. Marion,et al.  Modeling ferrous–ferric iron chemistry with application to martian surface geochemistry , 2006 .

[33]  Nathalie A. Cabrol,et al.  Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater , 2006 .

[34]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[35]  Miles J. Johnson,et al.  In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .

[36]  K. Rosso,et al.  Chemical Bonding in Sulfide Minerals , 2006 .

[37]  Gordon R. Osinski,et al.  Tectonics of complex crater formation as revealed by the Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .

[38]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[39]  Steven W. Squyres,et al.  Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum , 2005 .

[40]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[41]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[42]  A. Navrotsky,et al.  Thermodynamic properties, low-temperature heat-capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6 , 2004 .

[43]  Anthony J. Ratkowski,et al.  The sequential maximum angle convex cone (SMACC) endmember model , 2004, SPIE Defense + Commercial Sensing.

[44]  F. Caporuscio THE 22ND EDITION OF THE MANUAL OF MINERAL SCIENCE.By Cornelis Klein. John Wiley & Sons, Inc., New York, 2002, 641 p. plus CD-ROM, $115.95. , 2004 .

[45]  Udo Schwertmann,et al.  Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (~Fe( , 2004 .

[46]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[47]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[48]  Raymond E. Arvidson,et al.  Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .

[49]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[50]  G. Marion,et al.  Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars , 2003 .

[51]  Roger,et al.  Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .

[52]  J. Post,et al.  Manganese oxide minerals: crystal structures and economic and environmental significance. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[53]  H. V. Lauer,et al.  Pigmenting agents in Martian soils: inferences from spectral, Mossbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. , 1993, Geochimica et cosmochimica acta.

[54]  D. Sherman The electronic structures of manganese oxide minerals , 1984 .

[55]  D. M. Snr. The electronic structures of manganese oxide minerals , 1984 .

[56]  G. A. Young,et al.  Gosses bluff impact structure, australia. , 1972, Science.

[57]  S. Ariya,et al.  THERMODYNAMICS OF IRON OXIDES , 1963 .