High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars
暂无分享,去创建一个
Jeffrey R. Johnson | A. Knoll | K. Herkenhoff | S. Squyres | R. Morris | M. Golombek | J. Bell | R. Arvidson | B. Jolliff | W. Calvin | E. Guinness | S. McLennan | J. Grotzinger | R. Gellert | B. Clark | D. Mittlefehldt | J. Catalano | W. Farrand | P. A. de Souza | N. Stein | S. VanBommel | V. Fox | M. Hinkle
[1] Kenneth Low Kelly,et al. Color: Universal Language and Dictionary of Names , 2018 .
[2] J. Grant,et al. The Degradational History of Endeavour Crater, Mars , 2016 .
[3] Kenneth S. Edgett,et al. Deconvolution of distinct lithology chemistry through oversampling with the Mars Science Laboratory Alpha Particle X-Ray Spectrometer , 2016 .
[4] R. E. Arvidson,et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars , 2015, Science.
[5] R. A. McInroy,et al. Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data , 2015 .
[6] J. A. Grant,et al. Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater , 2015 .
[7] M. Hinkle. Ion Interactions at the Mineral-Water Interface During Biogeochemical Iron and Manganese Cycling , 2015 .
[8] S. Squyres,et al. Smectites in the Rim of Endeavour Crater, Mars, Detected Using Along-Track Oversampled CRISM Observations , 2014 .
[9] B. Ehlmann,et al. Mineralogy of the Martian Surface , 2014 .
[10] M. Poelchau,et al. Structural geology of impact craters , 2014 .
[11] E. A. Guinness,et al. Ancient Aqueous Environments at Endeavour Crater, Mars , 2014, Science.
[12] A. Yingst,et al. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.
[13] J. Catalano. Thermodynamic and mass balance constraints on iron‐bearing phyllosilicate formation and alteration pathways on early Mars , 2013 .
[14] N. Artemieva,et al. Ries crater and suevite revisited—Observations and modeling Part I: Observations , 2013 .
[15] E. Pierazzo,et al. Impact Cratering: Processes and Products , 2012 .
[16] R. E. Arvidson,et al. Ancient Impact and Aqueous Processes at Endeavour Crater, Mars , 2012, Science.
[17] P. Taskinen,et al. Thermodynamic modelling of aqueous Fe(II) sulfate solutions , 2011 .
[18] J. Majzlan,et al. Internally consistent thermodynamic data for metal divalent sulphate hydrates , 2011 .
[19] William H. Farrand,et al. Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater , 2011 .
[20] Jeffrey R. Johnson,et al. Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater , 2010 .
[21] Jeffrey R. Johnson,et al. Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping , 2010 .
[22] J. Majzlan,et al. Internally consistent thermodynamic data for magnesium sulfate hydrates , 2009 .
[23] J. K. Crowley,et al. Modeling aluminum–silicon chemistries and application to Australian acidic playa lakes as analogues for Mars , 2009 .
[24] G. Marion,et al. Modeling aqueous perchlorate chemistries with applications to Mars , 2009 .
[25] K. Emmerich,et al. Clay profiling: The classification of montmorillonites , 2009 .
[26] K. Emmerich,et al. A comprehensive characterization of dioctahedral smectites , 2009 .
[27] W. Broecker,et al. Rock varnish evidence for latest Pleistocene millennial-scale wet events in the drylands of western United States , 2008 .
[28] C. Bethke. Geochemical and Biogeochemical Reaction Modeling , 2007 .
[29] S. McLennan,et al. Application of the Pitzer ion interaction model to isopiestic data for the Fe2(SO4)3-H2SO4-H2O system at 298.15 and 323.15 K , 2007 .
[30] Raymond E. Arvidson,et al. Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .
[31] John F. Mustard,et al. Detection and discrimination of sulfate minerals using reflectance spectroscopy , 2006 .
[32] G. Marion,et al. Modeling ferrous–ferric iron chemistry with application to martian surface geochemistry , 2006 .
[33] Nathalie A. Cabrol,et al. Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater , 2006 .
[34] Steven W. Squyres,et al. Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .
[35] Miles J. Johnson,et al. In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .
[36] K. Rosso,et al. Chemical Bonding in Sulfide Minerals , 2006 .
[37] Gordon R. Osinski,et al. Tectonics of complex crater formation as revealed by the Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .
[38] R. E. Arvidson,et al. Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.
[39] Steven W. Squyres,et al. Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum , 2005 .
[40] William H. Farrand,et al. Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .
[41] A. McEwen,et al. Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .
[42] A. Navrotsky,et al. Thermodynamic properties, low-temperature heat-capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6 , 2004 .
[43] Anthony J. Ratkowski,et al. The sequential maximum angle convex cone (SMACC) endmember model , 2004, SPIE Defense + Commercial Sensing.
[44] F. Caporuscio. THE 22ND EDITION OF THE MANUAL OF MINERAL SCIENCE.By Cornelis Klein. John Wiley & Sons, Inc., New York, 2002, 641 p. plus CD-ROM, $115.95. , 2004 .
[45] Udo Schwertmann,et al. Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (~Fe( , 2004 .
[46] Raul A. Romero,et al. Athena Mars rover science investigation , 2003 .
[47] S. T. Elliot,et al. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .
[48] Raymond E. Arvidson,et al. Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .
[49] Miles J. Johnson,et al. Athena Microscopic Imager investigation , 2003 .
[50] G. Marion,et al. Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars , 2003 .
[51] Roger,et al. Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .
[52] J. Post,et al. Manganese oxide minerals: crystal structures and economic and environmental significance. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[53] H. V. Lauer,et al. Pigmenting agents in Martian soils: inferences from spectral, Mossbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. , 1993, Geochimica et cosmochimica acta.
[54] D. Sherman. The electronic structures of manganese oxide minerals , 1984 .
[55] D. M. Snr.. The electronic structures of manganese oxide minerals , 1984 .
[56] G. A. Young,et al. Gosses bluff impact structure, australia. , 1972, Science.
[57] S. Ariya,et al. THERMODYNAMICS OF IRON OXIDES , 1963 .