Genotype-specific interactions between parasitic arthropods

[1]  M. Sabelis,et al.  Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk , 2014, The New phytologist.

[2]  M. Hochberg,et al.  Contrasted coevolutionary dynamics between a bacterial pathogen and its bacteriophages , 2014, Proceedings of the National Academy of Sciences.

[3]  M. Orsucci,et al.  Combining experimental evolution and field population assays to study the evolution of host range breadth , 2014, Journal of evolutionary biology.

[4]  K. Heath,et al.  Connecting functional and statistical definitions of genotype by genotype interactions in coevolutionary studies , 2014, Front. Genet..

[5]  Samuel Alizon,et al.  Co-infection and super-infection models in evolutionary epidemiology , 2013, Interface Focus.

[6]  J. Jokela,et al.  Genotype-Specific vs. Cross-Reactive Host Immunity against a Macroparasite , 2013, PloS one.

[7]  F. Ferragut,et al.  The invasive spider mite Tetranychus evansi (Acari: Tetranychidae) alters community composition and host-plant use of native relatives , 2013, Experimental and Applied Acarology.

[8]  S. Paterson The immunology and ecology of co‐infection , 2013, Molecular ecology.

[9]  Samuel Alizon,et al.  Multiple infections and the evolution of virulence. , 2013, Ecology letters.

[10]  T. Scott,et al.  Specificity of resistance to dengue virus isolates is associated with genotypes of the mosquito antiviral gene Dicer-2 , 2013, Proceedings of the Royal Society B: Biological Sciences.

[11]  K. Heath,et al.  Coevolutionary genetic variation in the legume‐rhizobium transcriptome , 2012, Molecular ecology.

[12]  J. Jokela,et al.  Reciprocal Interaction Matrix Reveals Complex Genetic and Dose-Dependent Specificity among Coinfecting Parasites , 2012, The American Naturalist.

[13]  O. Kaltz,et al.  Genetic influence on disease spread following arrival of infected carriers. , 2012, Ecology letters.

[14]  M. Egas,et al.  Environmental effects on the detection of adaptation , 2011, Journal of evolutionary biology.

[15]  M. Sabelis,et al.  A herbivore that manipulates plant defence , 2011 .

[16]  M. Sabelis,et al.  A herbivore that manipulates plant defence , 2011, Ecology letters.

[17]  Mark J. F. Brown,et al.  Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence , 2010, Proceedings of the Royal Society B: Biological Sciences.

[18]  J. Koella,et al.  Experimental evolution of specialization by a microsporidian parasite , 2010, BMC Evolutionary Biology.

[19]  T. Brévault,et al.  Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants , 2009, Molecular ecology.

[20]  J. Koella,et al.  Infectious Dose Affects the Outcome of the Within‐Host Competition between Parasites , 2009, The American Naturalist.

[21]  J. Jokela,et al.  Interactions among co-infecting parasite species: a mechanism maintaining genetic variation in parasites? , 2009, Proceedings of the Royal Society B: Biological Sciences.

[22]  Troy Day,et al.  Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. , 2008, Trends in ecology & evolution.

[23]  M. Haring,et al.  Intraspecific variation in a generalist herbivore accounts for differential induction and impact of host plant defences , 2008, Proceedings of the Royal Society B: Biological Sciences.

[24]  K. McCoy,et al.  Host race formation in the Acari , 2007, Experimental and Applied Acarology.

[25]  A. Pedersen,et al.  Emphasizing the ecology in parasite community ecology. , 2007, Trends in ecology & evolution.

[26]  D. Sim,et al.  WITHIN‐HOST COMPETITION IN GENETICALLY DIVERSE MALARIA INFECTIONS: PARASITE VIRULENCE AND COMPETITIVE SUCCESS , 2006, Evolution; international journal of organic evolution.

[27]  D. Thiéry,et al.  Does natural larval parasitism of Lobesia botrana (Lepidoptera: Tortricidae) vary between years, generation, density of the host and vine cultivar? , 2006, Bulletin of Entomological Research.

[28]  André Garcia,et al.  Coinfection with Plasmodium falciparum and schistosoma haematobium: protective effect of schistosomiasis on malaria in senegalese children? , 2005, The American journal of tropical medicine and hygiene.

[29]  F. Prugnolle,et al.  DISPERSAL IN A PARASITIC WORM AND ITS TWO HOSTS: CONSEQUENCE FOR LOCAL ADAPTATION , 2005, Evolution; international journal of organic evolution.

[30]  J. Cory,et al.  Host ecology determines the relative fitness of virus genotypes in mixed‐genotype nucleopolyhedrovirus infections , 2004, Journal of evolutionary biology.

[31]  M. Blouin,et al.  LIFE CYCLES SHAPE PARASITE EVOLUTION: COMPARATIVE POPULATION GENETICS OF SALMON TREMATODES , 2004, Evolution; international journal of organic evolution.

[32]  A. Agrawal,et al.  Induction of Preference and Performance after Acclimation to Novel Hosts in a Phytophagous Spider Mite: Adaptive Plasticity? , 2002, The American Naturalist.

[33]  James H. Tumlinson,et al.  The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays , 2001, Planta.

[34]  O. E. Krips,et al.  Intrinsic rate of population increase of the spider mite Tetranychus urticae on the ornamental crop gerbera: intraspecific variation in host plant and herbivore , 1998 .

[35]  M. Raviglione,et al.  HIV-associated tuberculosis in developing countries: epidemiology and strategies for prevention. , 1992, Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[36]  J. D. Fry Trade-Offs in Fitness on Different Hosts: Evidence from a Selection Experiment with a Phytophagous Mite , 1990, The American Naturalist.

[37]  W. Helle,et al.  Karyotypes and sex-determination in spider mites (Tetranychidae) , 1967, Genetica.

[38]  G. Roderick,et al.  Recent emergence and worldwide spread of the red tomato spider mite, Tetranychus evansi: genetic variation and multiple cryptic invasions , 2010, Biological Invasions.

[39]  A. Migeon,et al.  Spider Mites Web: A comprehensive database for the Tetranychidae , 2010 .

[40]  P. Asprelli,et al.  THE GEOGRAPHIC MOSAIC OF COEVOLUTION , 2007 .

[41]  J. Koella,et al.  Coevolutionary interactions between host and parasite genotypes. , 2006, Trends in parasitology.

[42]  Curtis M. Lively,et al.  Infection genetics: gene-for-gene versus matching-alleles models and all points in between , 2002 .

[43]  Steven A. Frank,et al.  Immunology and Evolution of Infectious Disease , 2002 .

[44]  Maurice W. Sabelis,et al.  Spider mites: their biology, natural enemies and control: vol. 1A , 1985 .