Positive PN Closures

We introduce a modification to the standard spherical harmonic closure used with linear kinetic equations of particle transport. While the standard closure is known to produce negative particle concentrations, the modification corrects this defect by requiring that the ansatz used to close the equations itself be a nonnegative function. We impose this requirement via explicit constraints in a quadratic optimization problem.

[1]  J. E. Hoogenboom,et al.  A new effective Monte Carlo Midway coupling method in MCNP applied to a well logging problem , 1998 .

[2]  R. D. O'Dell,et al.  Transport calculations for nuclear analyses: Theory and guidelines for effective use of transport codes , 1987 .

[3]  Ryan G. McClarren,et al.  Semi-implicit time integration for PN thermal radiative transfer , 2008, J. Comput. Phys..

[4]  W. Kofink Studies of the spherical harmonics method in neutron transport theory , 1957 .

[5]  P. W. McKenty,et al.  The Generation of Time-Dependent Neutron Transport Solutions in Infinite Media , 1977 .

[6]  G. C. Pomraning The Equations of Radiation Hydrodynamics , 2005 .

[7]  Michael L. Hall,et al.  Diffusion, P1, and other approximate forms of radiation transport , 2000 .

[8]  James Paul Holloway,et al.  Two-dimensional time dependent Riemann solvers for neutron transport , 2005 .

[9]  Ryan G. McClarren,et al.  Analytic P1 solutions for time-dependent, thermal radiative transfer in several geometries , 2008 .

[10]  G. Arfken Mathematical Methods for Physicists , 1967 .

[11]  James Paul Holloway,et al.  One-dimensional Riemann solvers and the maximum entropy closure , 2001 .

[12]  B. Davison,et al.  ON THE RATE OF CONVERGENCE OF THE SPHERICAL-HARMONICS METHOD IN THE MILNE PROBLEM , 1958 .

[13]  G. C. Pomraning,et al.  Variational boundary conditions for the spherical harmonics approximation to the neutron transport equation , 1964 .

[14]  G. C. Pomraning,et al.  Linear Transport Theory , 1967 .

[15]  J. M. Smit Neutrino transport in core-collapse supernovae , 1998 .

[16]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[17]  Edward W. Larsen,et al.  The P N Theory as an Asymptotic Limit of Transport Theory in Planar Geometry—I: Analysis , 1991 .

[18]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[19]  Edward W. Larsen,et al.  The Asymptotic Diffusion Limit of Discretized Transport Problems , 1992 .

[20]  Barry D Ganapol,et al.  Asymptotically exact boundary conditions for the PN equations , 1993 .

[21]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[22]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[23]  Marvin L. Adams,et al.  Discontinuous Finite Element Transport Solutions in Thick Diffusive Problems , 2001 .

[24]  J. A. Fleck,et al.  An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport , 1971 .

[25]  Kirk A. Mathews,et al.  On the propagation of rays in discrete ordinates , 1999 .

[26]  Cory D. Hauck,et al.  Temporal Regularization of the PN Equations , 2009, Multiscale Model. Simul..

[27]  Barry D Ganapol SOLUTION OF THE ONE-GROUP TIME-DEPENDENT NEUTRON TRANSPORT EQUATION IN AN INFINITE MEDIUM BY POLYNOMIAL RECONSTRUCTION. , 1986 .

[28]  W. F. Walters Use of the Chebyshev-Legendre quadrature set in discrete-ordinate codes , 1987 .

[29]  D. Mihalas,et al.  Foundations of Radiation Hydrodynamics , 1985 .

[30]  James Paul Holloway,et al.  On solutions to the Pn equations for thermal radiative transfer , 2008, J. Comput. Phys..

[31]  Ryan G. McClarren,et al.  Semi-implicit time integration for the Pn equations, invited , 2007 .

[32]  Thomas A. Brunner,et al.  Forms of Approximate Radiation Transport , 2002 .