Metal hydride-based materials towards high performance negative electrodes for all-solid-state lithium-ion batteries.

Electrode performances of MgH2-LiBH4 composite materials for lithium-ion batteries have been studied using LiBH4 as the solid-state electrolyte, which shows a high reversible capacity of 1650 mA h g(-1) with an extremely low polarization of 0.05 V, durable cyclability and robust rate capability.

[1]  J. Bonnet,et al.  Bottom-up preparation of MgH₂ nanoparticles with enhanced cycle life stability during electrochemical conversion in Li-ion batteries. , 2014, Nanoscale.

[2]  Atsushi Unemoto,et al.  Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte , 2014 .

[3]  S. Orimo,et al.  Complex Hydrides for Electrochemical Energy Storage , 2014 .

[4]  T. Ichikawa,et al.  Anode properties of magnesium hydride catalyzed with niobium oxide for an all solid-state lithium-ion battery. , 2013, Chemical communications.

[5]  J. Jumas,et al.  Reactivity of complex hydrides Mg2FeH6, Mg2CoH5 and Mg2NiH4 with lithium ion: Far from equilibrium electrochemically driven conversion reactions , 2013 .

[6]  B. Chowdari,et al.  Metal oxides and oxysalts as anode materials for Li ion batteries. , 2013, Chemical reviews.

[7]  S. Belin,et al.  XAS investigations on nanocrystalline Mg2FeH6 used as a negative electrode of Li-ion batteries , 2013 .

[8]  K. Takada,et al.  All-solid-state lithium battery with LiBH4 solid electrolyte , 2013 .

[9]  Y. Filinchuk,et al.  New li ion conductors and solid state hydrogen storage materials: LiM(BH 4) 3Cl, M = La, Gd , 2012 .

[10]  P. Reale,et al.  Magnesium hydride as a high capacity negative electrode for lithium ion batteries , 2012 .

[11]  J. Bonnet,et al.  Reactivity of TiH2 hydride with lithium ion: Evidence for a new conversion mechanism , 2012 .

[12]  Young-Su Lee,et al.  LiCe(BH 4) 3Cl, a new lithium-ion conductor and hydrogen storage material with isolated tetranuclear anionic clusters , 2012 .

[13]  Haoshen Zhou,et al.  Enhancing the performances of Li-ion batteries by carbon-coating: present and future. , 2012, Chemical communications.

[14]  Ying Shi,et al.  Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries , 2011 .

[15]  S. Orimo,et al.  Lithium Fast‐Ionic Conduction in Complex Hydrides: Review and Prospects , 2011 .

[16]  Jean-Louis Bobet,et al.  Carboxymethylcellulose and carboxymethylcellulose-formate as binders in MgH2–carbon composites negative electrode for lithium-ion batteries , 2011 .

[17]  T. Ichikawa,et al.  Superior Hydrogen Exchange Effect in the MgH2−LiBH4 System , 2010 .

[18]  H. Oguchi,et al.  Lithium-ion conduction in complex hydrides LiAlH4 and Li3AlH6 , 2010 .

[19]  A. Remhof,et al.  Complex hydrides with (BH(4))(-) and (NH(2))(-) anions as new lithium fast-ion conductors. , 2009, Journal of the American Chemical Society.

[20]  J. Tarascon,et al.  2LiH + M (M = Mg, Ti): New concept of negative electrode for rechargeable lithium-ion batteries , 2009 .

[21]  S. Orimo,et al.  Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. , 2009, Journal of the American Chemical Society.

[22]  J. Tarascon,et al.  Metal hydrides for lithium-ion batteries. , 2008, Nature materials.

[23]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[24]  M. Armand,et al.  Building better batteries , 2008, Nature.

[25]  S. Orimo,et al.  Lithium superionic conduction in lithium borohydride accompanied by structural transition , 2007 .

[26]  Thomas Klassen,et al.  Hydrogen sorption properties of MgH2-LiBH4 composites , 2007 .

[27]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[28]  Florian Mertens,et al.  Reversible storage of hydrogen in destabilized LiBH4. , 2005, The journal of physical chemistry. B.

[29]  J. Jumas,et al.  Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel , 2004 .