Far-from-equilibrium measurements of thermodynamic length.

Thermodynamic length is a path function that generalizes the notion of length to the surface of thermodynamic states. Here, we show how to measure thermodynamic length in far-from-equilibrium experiments using the work fluctuation relations. For these microscopic systems, it proves necessary to define the thermodynamic length in terms of the Fisher information. Consequently, the thermodynamic length can be directly related to the magnitude of fluctuations about equilibrium. The work fluctuation relations link the work and the free-energy change during an external perturbation on a system. We use this result to determine equilibrium averages at intermediate points of the protocol in which the system is out of equilibrium. This allows us to extend Bennett's method to determine the potential of the mean force, as well as the thermodynamic length, in single-molecule experiments.

[1]  G. Hummer,et al.  Free energy reconstruction from nonequilibrium single-molecule pulling experiments , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  F. Ritort,et al.  Methods and Applications , 2006 .

[3]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[4]  C. R. Rao,et al.  Entropy differential metric, distance and divergence measures in probability spaces: A unified approach , 1982 .

[5]  Gavin E Crooks,et al.  Measuring thermodynamic length. , 2007, Physical review letters.

[6]  丁東鎭 12 , 1993, Algo habla con mi voz.

[7]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[8]  Simone Marsili,et al.  Calculation of the potential of mean force from nonequilibrium measurements via maximum likelihood estimators. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Peter Salamon,et al.  Length in statistical thermodynamics , 1985 .

[10]  G. Ruppeiner,et al.  Thermodynamics: A Riemannian geometric model , 1979 .

[11]  Dominik Endres,et al.  A new metric for probability distributions , 2003, IEEE Transactions on Information Theory.

[12]  G. Crooks Path-ensemble averages in systems driven far from equilibrium , 1999, cond-mat/9908420.

[13]  C. Jarzynski,et al.  Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies , 2005, Nature.

[14]  F. Schlögl,et al.  Thermodynamic metric and stochastic measures , 1985 .

[15]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[16]  F. Weinhold Metric geometry of equilibrium thermodynamics. V. Aspects of heterogeneous equilibrium , 1976 .

[17]  Luca Peliti,et al.  On the work-Hamiltonian connection in manipulated systems , 2008 .

[18]  Michael R. Shirts,et al.  Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. , 2003, Physical review letters.

[19]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[20]  Martin Karplus,et al.  Optimal estimates of free energies from multistate nonequilibrium work data. , 2006, Physical review letters.

[21]  Frank Weinhold,et al.  Metric geometry of equilibrium thermodynamics , 1975 .

[22]  F. Ritort,et al.  The nonequilibrium thermodynamics of small systems , 2005 .

[23]  David D L Minh,et al.  Optimized free energies from bidirectional single-molecule force spectroscopy. , 2008, Physical review letters.

[24]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[25]  J. Gibbs Elementary Principles in Statistical Mechanics , 1902 .

[26]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  I. Tinoco,et al.  Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski's Equality , 2002, Science.

[28]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  Martin Karplus,et al.  Bayesian estimates of free energies from nonequilibrium work data in the presence of instrument noise. , 2007, The Journal of chemical physics.

[30]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[31]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[32]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[33]  Bjarne Andresen,et al.  Quasistatic processes as step equilibrations , 1985 .

[34]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[35]  Rivier,et al.  Geometrical aspects of statistical mechanics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  Peter Salamon,et al.  Thermodynamic length and dissipated availability , 1983 .