Phosphinothiolates as ligands for polyhydrido copper nanoclusters.

The reaction of [CuI(HSC6 H4 PPh2 )]2 with NaBH4 in CH2 Cl2 /EtOH led to air- and moisture-stable copper hydride nanoparticles (CuNPs) containing phosphinothiolates as new ligands, one of which was isolated by crystallization. The X-ray crystal structure of [Cu18 H7 L10 I] (L=(-) S(C6 H4 )PPh2 ) shows unprecedented features in its 28-atom framework (18 Cu and 10 S atoms). Seven hydrogen atoms, in hydride form, are needed for charge balance and were located by density functional theory methods. H2 was released from the copper hydride nanoparticles by thermolysis and visible light irradiation.

[1]  A. Urakawa,et al.  Air-stable gold nanoparticles ligated by secondary phosphine oxides for the chemoselective hydrogenation of aldehydes: crucial role of the ligand. , 2014, Journal of the American Chemical Society.

[2]  E. Wang,et al.  Stable Cu nanoclusters: from an aggregation-induced emission mechanism to biosensing and catalytic applications. , 2014, Chemical communications.

[3]  J. Norton,et al.  Electron transfer from hexameric copper hydrides. , 2013, Journal of the American Chemical Society.

[4]  Atsushi Kobayashi,et al.  Photo- and vapor-controlled luminescence of rhombic dicopper(I) complexes containing dimethyl sulfoxide. , 2013, Inorganic chemistry.

[5]  Laigui Yu,et al.  Preparation and characterization of copper nanoparticles surface‐capped by alkanethiols , 2013 .

[6]  A. Andrieux-Ledier,et al.  Synthesis of Silver Nanoparticles Using Different Silver Phosphine Precursors: Formation Mechanism and Size Control , 2013 .

[7]  J. Xie,et al.  Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. , 2013, Chemistry, an Asian journal.

[8]  J. Saillard,et al.  A nanospheric polyhydrido copper cluster of elongated triangular orthobicupola array: liberation of H2 from solar energy. , 2013, Journal of the American Chemical Society.

[9]  S. Dehnen,et al.  Chalcogenide clusters of copper and silver from silylated chalcogenide sources. , 2013, Chemical Society reviews.

[10]  A. Edwards,et al.  Hydrido copper clusters supported by dithiocarbamates: oxidative hydride removal and neutron diffraction analysis of [Cu7(H){S2C(aza-15-crown-5)}6]. , 2012, Inorganic chemistry.

[11]  G. Bertrand,et al.  Synthesis of a room-temperature-stable dimeric copper(I) hydride. , 2011, Chemistry, an Asian journal.

[12]  Wei Chen,et al.  One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. , 2011, Journal of the American Chemical Society.

[13]  José Rivas,et al.  Synthesis of small atomic copper clusters in microemulsions. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[14]  J. Okuda,et al.  Non-metallocene hydride complexes of the rare-earth metals , 2008 .

[15]  C. Deutsch,et al.  CuH-catalyzed reactions. , 2008, Chemical reviews.

[16]  T. Dong,et al.  Superlattice of octanethiol-protected copper nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[17]  C. Che,et al.  Unexpected reactivities of Cu2(diphosphine)2 complexes in alcohol: isolation, x-ray crystal structure, and photoluminescent properties of a remarkably stable [Cu3(diphosphine)3(mu3-H)]2+ hydride complex. , 2005, Journal of the American Chemical Society.

[18]  A. Wee,et al.  Three-Dimensional Self-Assembled Monolayer (3D SAM) of n-Alkanethiols on Copper Nanoclusters , 2004 .

[19]  Si‐Dian Li,et al.  M4H4X: hydrometals (M=Cu, Ni) containing tetracoordinate planar nonmetals (X=B, C, N, O). , 2004, Angewandte Chemie.

[20]  G. Mcgrady,et al.  The multifarious world of transition metal hydrides. , 2003, Chemical Society reviews.

[21]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[22]  G. Kociok‐Köhn,et al.  Trimethyltriazacyclohexane as bridging ligand for triangular Cu3 units and C-H hydride abstraction into a Cu6 cluster. , 2003, Chemical communications.

[23]  Douglas W. Stephan,et al.  Early transition metal hydride complexes: synthesis and reactivity , 2002 .

[24]  T. Miura,et al.  New Chiral Diphosphine Ligands Designed to have a Narrow Dihedral Angle in the Biaryl Backbone , 2001 .

[25]  S. Reed,et al.  Improved Synthesis of Small (dCORE ≈ 1.5 nm) Phosphine-Stabilized Gold Nanoparticles , 2000 .

[26]  J. Stryker,et al.  Highly Chemoselective Catalytic Hydrogenation of Unsaturated Ketones and Aldehydes to Unsaturated Alcohols Using Phosphine-Stabilized Copper(I) Hydride Complexes , 2000 .

[27]  Evert Jan Baerends,et al.  Geometry optimizations in the zero order regular approximation for relativistic effects. , 1999 .

[28]  Miguel A. Esteruelas,et al.  Dihydrogen Complexes as Homogeneous Reduction Catalysts. , 1998, Chemical reviews.

[29]  A. Schäfer,et al.  An Ab Initio Study of Structures and Energetics of Copper Sulfide Clusters , 1996 .

[30]  A. Schäfer,et al.  New Sulfur‐ and Selenium‐Bridged Copper Clusters; Ab Initio Calculations on [Cu2nSen(PH3)m] Clusters , 1994 .

[31]  Stefanie Dehnen,et al.  Neue Schwefel‐ und Selen‐verbrückte Kupfercluster; ab‐initio‐Berechnungen von [Cu2nSen(PH3)m]‐Clustern , 1994 .

[32]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[33]  Xiaobo Shi,et al.  Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage , 1992 .

[34]  M. R. McLean,et al.  Neutron diffraction structure analysis of a hexanuclear copper hydrido complex, H6Cu6[P(p-tolyl)3]6: an unexpected finding , 1989 .

[35]  C. Raston,et al.  Lewis-Base Adducts of Group 11 Metal(I) Compounds. 49. Structural Characterization of hexameric and pentameric (triphenylphosphine)copper(I) hydrides , 1989 .

[36]  J. Zubieta,et al.  2-phosphino- and 2-phosphinylbenzenethiols: new ligand types , 1989 .

[37]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[38]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[39]  J. Perdew,et al.  Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas , 1986, Physical review. B, Condensed matter.

[40]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[41]  K. G. Caulton,et al.  Soluble copper hydrides: solution behavior and reactions related to carbon monoxide hydrogenation , 1981 .

[42]  R. Boese,et al.  Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe , 1981 .

[43]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[44]  P. Bartlett,et al.  Synthesis of water-soluble undecagold cluster compounds of potential importance in electron microscopic and other studies of biological systems , 1978 .

[45]  S. A. Bezman,et al.  Synthesis and molecular geometry of hexameric triphenylphosphinocopper(I) hydride and the crystal structure of H6Cu6(PPh3)6. HCONMe2 [hexameric triphenylphosphino copper(I) hydride dimethylformamide] , 1972 .

[46]  D. Shriver,et al.  Cryoscopic study of copper(I) hydride-phosphine complexes , 1969 .

[47]  D. Shriver,et al.  Nature of soluble copper(I) hydride , 1968 .

[48]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[49]  Younan Xia,et al.  Gold nanostructures: a class of multifunctional materials for biomedical applications. , 2011, Chemical Society reviews.

[50]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[51]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[52]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[53]  W. P. Bosman,et al.  Intermediates in the formation of gold clusters. Preparation and x-ray analysis of [Au7(PPh3)7]+ and synthesis and characterization of [Au8(PPh3)6I]PF6 , 1984 .