Fault Detection in a Chemical Reactor by Using the Standardized Innovation

This paper presents a method for detecting abrupt changes in dynamic systems. It is based on statistical information generated by the Extended Kalman Filter and is intended to reveal any drift from the normal behaviour of the process. This method was originally developed for linear systems (Himmeblau, 1978), our contribution consists in extending it to unsteady state nonlinear systems. A failure of chemical origin in a perfectly stirred batch chemical reactor, occurring at an unknown instant, is simulated. The reactor is modelled by mathematical expressions translating the relationships between heat and mass balances applied to the reaction mass. These expressions constitute the model which describes the behaviour of the process under normal conditions. The purpose is to detect the presence of this abrupt change, and pinpoint the moment it occurred. It is also shown that the convergence of the Extended Kalman Filter is accomplished more or less rapidly according to the nature of the noise generated by the measurement sensors. The state estimate is observed and discussed, as well as the delay in detection according to the decision threshold. The reaction under study is an exothermic second order one.

[1]  Asok Ray,et al.  A Fault Detection and Isolation Methodology Theory and Application , 1984, 1984 American Control Conference.

[2]  Yahya Chetouani,et al.  Test statistique sur les innovations normalisées pour la détection de défauts d'équipements: Application à la surveillance d'un réacteur chimique , 2001 .

[3]  N. Ishii,et al.  Computer classification of the EEG time series by Kullback information measure , 1980 .

[4]  L. Biegler,et al.  Data reconciliation and gross‐error detection for dynamic systems , 1996 .

[5]  Lennart Ljung,et al.  The Extended Kalman Filter as a Parameter Estimator for Linear Systems , 1979 .

[6]  George V. Moustakides,et al.  Detection and diagnosis of changes in the eigenstructure of nonstationary multivariable systems , 1987, Autom..

[7]  E. Gilles,et al.  Multiple filter methods for detection of hazardous states in an industrial plant , 1990 .

[8]  Rolf Isermann,et al.  Process fault detection based on modeling and estimation methods - A survey , 1984, Autom..

[9]  Alan S. Willsky,et al.  F-8 DFBW sensor failure identification using analytic redundancy , 1977 .

[10]  Richard S. Sutton,et al.  Neural networks for control , 1990 .

[11]  Tep Sastri,et al.  Sequential method of change detection and adaptive prediction of municipal water demand , 1987 .

[12]  Hector Hernandez-Guevara Contribution à la simulation de systèmes chimiques orientée vers l’analyse de sécurité : application à la prévention de l’explosion thermique , 1987 .

[13]  Janos Gertler,et al.  A new structural framework for parity equation-based failure detection and isolation , 1990, Autom..

[14]  Spyros G. Tzafestas Knowledge-Based System Diagnosis, Supervision, and Control , 1988 .

[15]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[16]  Masahiro Kinoshita,et al.  Fractal‐like behavior of a mass‐transport process , 1997 .

[17]  Silvina I. Biagiola,et al.  Application of state estimation based NMPC to an unstable nonlinear process , 2004 .

[18]  A. C. Sanderson,et al.  Hierarchical modeling of EEG signals , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  L. Lasdon,et al.  Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques , 1992 .

[20]  Régine André-Obrecht,et al.  A new statistical approach for the automatic segmentation of continuous speech signals , 1988, IEEE Trans. Acoust. Speech Signal Process..

[21]  Jie Chen,et al.  A REVIEW OF PARITY SPACE APPROACHES TO FAULT DIAGNOSIS , 1992 .

[22]  Donald E. Gustafson,et al.  ECG/VCG Rhythm Diagnosis Using Statistical Signal Analysis-I. Identification of Persistent Rhythms , 1978, IEEE Transactions on Biomedical Engineering.

[23]  Charalambos A. Koufopanos,et al.  Dynamic response and safety assessment of a batch process on cooling breakdown , 1994 .

[24]  James L. Alty,et al.  Knowledge engineering for industrial expert systems , 1991, Autom..

[25]  P K Houpt,et al.  Dynamic model-based techniques for the detection of incidents on freeways , 1980 .

[26]  F. Gustafsson The marginalized likelihood ratio test for detecting abrupt changes , 1996, IEEE Trans. Autom. Control..

[27]  R. K. Mehra,et al.  Correspondence item: An innovations approach to fault detection and diagnosis in dynamic systems , 1971 .

[28]  Yahya Chetouani Contribution à l'étude de la détection de dysfonctionnements dans les procédés chimiques : application aux réacteurs chimiques double enveloppe , 2000 .

[29]  Ulrich Appel,et al.  Adaptive sequential segmentation of piecewise stationary time series , 1983, Inf. Sci..

[30]  David Mautner Himmelblau,et al.  Fault detection and diagnosis in chemical and petrochemical processes , 1978 .

[31]  A. Benveniste,et al.  Desgin and comparative study of some sequential jump detection algorithms for digital signals , 1983 .

[32]  Jay H. Lee,et al.  Extended Kalman Filter Based Nonlinear Model Predictive Control , 1993, 1993 American Control Conference.

[33]  Józef Korbicz,et al.  Analytical and knowledge-based redundancy for fault diagnosis in process plants , 1993 .

[34]  Harold Lee Jones,et al.  Failure detection in linear systems , 1973 .

[35]  Christine S. Grant,et al.  Removal of oil films from stainless steel tubes , 1997 .

[36]  G Stephanopoulos,et al.  Studies on on‐line bioreactor identification. I. Theory , 1984, Biotechnology and bioengineering.

[37]  Igor V. Nikiforov,et al.  Application of change detection theory to seismic signal processing , 1985 .

[38]  B. W. Bequette,et al.  Computational issues in nonlinear predictive control , 1993 .

[39]  Charalambos A. Koufopanos,et al.  Studies on parametric sensitivity and safe operation criteria of batch processes , 1993 .