The formation and evolution of low-surface-brightness galaxies

Our statistical understanding of galaxy evolution is fundamentally driven by objects that lie above the surface-brightness limits of current wide-area surveys (μ ∼ 23 mag arcsec−2). While both theory and small, deep surveys have hinted at a rich population of low-surface-brightness galaxies (LSBGs) fainter than these limits, their formation remains poorly understood. We use Horizon-AGN, a cosmological hydrodynamical simulation to study how LSBGs, and in particular the population of ultra-diffuse galaxies (UDGs; μ > 24.5 mag arcsec−2), form and evolve over time. For M∗>108M⊙⁠, LSBGs contribute 47, 7, and 6 per cent of the local number, mass, and luminosity densities, respectively (∼85/11/10 per cent for M∗>107M⊙⁠). Today’s LSBGs have similar dark-matter fractions and angular momenta to high-surface-brightness galaxies (HSBGs; μ 2. However, LSBG progenitors form stars more rapidly at early epochs. The higher resultant rate of supernova-energy injection flattens their gas-density profiles, which, in turn, creates shallower stellar profiles that are more susceptible to tidal processes. After z ∼ 1, tidal perturbations broaden LSBG stellar distributions and heat their cold gas, creating the diffuse, largely gas-poor LSBGs seen today. In clusters, ram-pressure stripping provides an additional mechanism that assists in gas removal in LSBG progenitors. Our results offer insights into the formation of a galaxy population that is central to a complete understanding of galaxy evolution, and that will be a key topic of research using new and forthcoming deep-wide surveys.

[1]  P. Hopkins,et al.  BREATHING FIRE: HOW STELLAR FEEDBACK DRIVES RADIAL MIGRATION, RAPID SIZE FLUCTUATIONS, AND POPULATION GRADIENTS IN LOW-MASS GALAXIES , 2015, 1512.01235.

[2]  C. Brook,et al.  Expanded haloes, abundance matching and too-big-to-fail in the Local Group , 2014, 1410.3825.

[3]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[4]  W. van Driel,et al.  The dwarf low surface brightness galaxy population of the Virgo Cluster - II. Colours and H I line observations , 2005 .

[5]  G. Lake,et al.  Galaxy harassment and the evolution of clusters of galaxies , 1995, Nature.

[6]  R. Teyssier,et al.  Cusp-core transformations in dwarf galaxies: observational predictions , 2012, 1206.4895.

[7]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[8]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[9]  H. Thomas Diehl,et al.  The Dark Energy Survey Camera (DECam) , 2012 .

[10]  Sergey E. Koposov,et al.  The hidden giant: discovery of an enormous Galactic dwarf satellite in Gaia DR2 , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  H. Hoekstra,et al.  The abundance and spatial distribution of ultra-diffuse galaxies in nearby galaxy clusters , 2016, 1602.00002.

[12]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[13]  G. Tormen THE ASSEMBLY OF MATTER IN GALAXY CLUSTERS , 1998 .

[14]  Michael H. F. Wilkinson,et al.  Comparison of density estimation methods for astronomical datasets , 2011 .

[15]  C. Pichon,et al.  Early-type Galaxy Spin Evolution in the Horizon-AGN Simulation , 2018, 1802.05916.

[16]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[17]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[18]  Eric W. Peng,et al.  GALAXIES AT THE EXTREMES: ULTRA-DIFFUSE GALAXIES IN THE VIRGO CLUSTER , 2015, 1507.02270.

[19]  P. Kroupa,et al.  Dwarf elliptical galaxies as ancient tidal dwarf galaxies , 2012, 1211.1382.

[20]  J. Brinkmann,et al.  The Properties and Luminosity Function of Extremely Low Luminosity Galaxies , 2004, astro-ph/0410164.

[21]  P. Hopkins,et al.  Discriminating Between the Physical Processes that Drive Spheroid Size Evolution , 2009, 0909.2039.

[22]  B. Vollmer,et al.  Ram Pressure Stripping and Galaxy Orbits: The Case of the Virgo Cluster , 2001, astro-ph/0107237.

[23]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[24]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[25]  T. Tal,et al.  THE RELATION BETWEEN COMPACT, QUIESCENT HIGH-REDSHIFT GALAXIES AND MASSIVE NEARBY ELLIPTICAL GALAXIES: EVIDENCE FOR HIERARCHICAL, INSIDE-OUT GROWTH , 2009, 0903.2044.

[26]  M. Disney,et al.  Visibility of galaxies , 1976, Nature.

[27]  Canada,et al.  Uncovering Additional Clues to Galaxy Evolution. II. The Environmental Impact of the Virgo Cluster on the Evolution of Dwarf Irregular Galaxies , 2003, astro-ph/0303359.

[28]  A. Leauthaud,et al.  Sumo Puff: Tidal Debris or Disturbed Ultra-Diffuse Galaxy? , 2017, 1704.06681.

[29]  C. Brook,et al.  Spectroscopic characterization of the stellar content of ultra-diffuse galaxies , 2018, 1803.06298.

[30]  Dwarf Galaxy Formation Induced by Galaxy Interactions , 2000, astro-ph/0006006.

[31]  A. Biviano,et al.  Galaxy evolution in the cluster Abell 85: new insights from the dwarf population , 2017, 1712.09857.

[32]  C. Brook,et al.  At the heart of the matter: the origin of bulgeless dwarf galaxies and Dark Matter cores , 2009, 0911.2237.

[33]  A. Baushev Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation , 2016, 1608.04356.

[34]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[35]  L. Breiman,et al.  Variable Kernel Estimates of Multivariate Densities , 1977 .

[36]  J. Ostriker,et al.  MINOR MERGERS AND THE SIZE EVOLUTION OF ELLIPTICAL GALAXIES , 2009, 0903.1636.

[37]  H. Hoekstra,et al.  A first constraint on the average mass of ultra-diffuse galaxies from weak gravitational lensing , 2017, 1704.07847.

[38]  The cosmological unimportance of low surface brightness galaxies , 2005, astro-ph/0510259.

[39]  Pouria A. Mistani,et al.  On the assembly of dwarf galaxies in clusters and their efficient formation of globular clusters , 2015, 1509.00030.

[40]  Yicheng Guo,et al.  The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating , 2018, Monthly Notices of the Royal Astronomical Society.

[41]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .

[42]  D. Kelson,et al.  Testing the Breathing Mode in Intermediate-mass Galaxies and Its Predicted Star Formation Rate-size Anti-correlation , 2018, The Astrophysical Journal.

[43]  C. Frenk,et al.  The cores of dwarf galaxy haloes , 1996, astro-ph/9610187.

[44]  Simon Prunet,et al.  Dancing in the dark: galactic properties trace spin swings along the cosmic web , 2014, 1402.1165.

[45]  J. Ostriker,et al.  GRAVITATIONAL HEATING HELPS MAKE MASSIVE GALAXIES RED AND DEAD , 2009, 0903.2840.

[46]  The Space Density of Galaxies through μB(0) = 25.0 Magnitudes per Inverse Arcsecond Squared , 2000 .

[47]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[48]  J. Kruijssen,et al.  The Maybe Stream: A Possible Cold Stellar Stream in the Ultra-diffuse Galaxy NGC1052-DF2 , 2018, 1805.00017.

[49]  O. Gnedin Tidal Effects in Clusters of Galaxies , 2003, astro-ph/0302497.

[50]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[51]  Y. Dubois,et al.  Blossoms from black hole seeds: properties and early growth regulated by supernova feedback , 2016, 1605.09394.

[52]  Claus Leitherer,et al.  Deposition of Mass, Momentum, and Energy by Massive Stars into the Interstellar Medium , 1992 .

[53]  G. Gavazzi,et al.  The Origin of Dwarf Ellipticals in the Virgo Cluster , 2008, 0801.2113.

[54]  Netherlands,et al.  The HI content of isolated ultra-diffuse galaxies: A sign of multiple formation mechanisms? , 2017, 1703.05610.

[55]  R. Abraham,et al.  Ultra-diffuse and Ultra-compact Galaxies in the Frontier Fields Cluster Abell 2744 , 2016, 1701.00011.

[56]  R. Nichol,et al.  The Luminosity Function of the Coma Cluster Core for -25 , 1995, astro-ph/9503102.

[57]  C. Leitherer,et al.  A LIBRARY OF THEORETICAL ULTRAVIOLET SPECTRA OF MASSIVE, HOT STARS FOR EVOLUTIONARY SYNTHESIS , 2010, 1006.5624.

[58]  P. Hopkins,et al.  Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies , 2015, 1502.02036.

[59]  Pieter van Dokkum,et al.  FORTY-SEVEN MILKY WAY-SIZED, EXTREMELY DIFFUSE GALAXIES IN THE COMA CLUSTER , 2014, 1410.8141.

[60]  C. Brook,et al.  A mass-dependent density profile for dark matter haloes including the influence of galaxy formation , 2014, 1404.5959.

[61]  Y. Komiyama,et al.  CATALOG OF ULTRA-DIFFUSE GALAXIES IN THE COMA CLUSTERS FROM SUBARU IMAGING DATA , 2016 .

[62]  W. Dehnen,et al.  Tidal disruption of dwarf spheroidal galaxies: the strange case of Crater II , 2018, 1802.09537.

[63]  S. Kaviraj,et al.  The Horizon-AGN simulation: evolution of galaxy properties over cosmic time , 2016, 1605.09379.

[64]  Matteo Monelli,et al.  A distance of 13 Mpc resolves the claimed anomalies of the galaxy lacking dark matter , 2018, Monthly Notices of the Royal Astronomical Society.

[65]  J. Blaizot,et al.  Building merger trees from cosmological N-body simulations. Towards improving galaxy formation model , 2009, 0902.0679.

[66]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.

[67]  A. Agnello,et al.  The globular cluster systems of 54 Coma ultra-diffuse galaxies: statistical constraints from HST data , 2016, 1610.01595.

[68]  C. Pichon,et al.  The Horizon-AGN Simulation: Morphological Diversity of Galaxies ,Promoted by AGN Feedback , 2016, 1606.03086.

[69]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[70]  Liverpool John Moores University,et al.  The dark nemesis of galaxy formation : why hot haloes trigger black hole growth and bring star formation to an end , 2016, 1607.07445.

[71]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[72]  J. Mould,et al.  Discovery of a huge low-surface-brightness galaxy - a protodisk galaxy at low redshift , 1987 .

[73]  L. Hernquist,et al.  Formation of dwarf galaxies in tidal tails , 1992, Nature.

[74]  C. Brook,et al.  NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes , 2016, 1605.05323.

[75]  Mubdi Rahman,et al.  Systematically Measuring Ultra-diffuse Galaxies (SMUDGes). I. Survey Description and First Results in the Coma Galaxy Cluster and Environs , 2018, The Astrophysical Journal Supplement Series.

[76]  D. Calzetti,et al.  Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample , 2007, astro-ph/0703213.

[77]  I. Trujillo,et al.  Ultra-diffuse galaxies outside clusters: clues to their formation and evolution , 2016, 1610.08980.

[78]  Edwin A. Valentijn,et al.  OmegaCAM: the 16k × 16k Survey Camera for the VLT Survey Telescope , 2002, SPIE Astronomical Telescopes + Instrumentation.

[79]  S. Kaviraj,et al.  Galaxy merger histories and the role of merging in driving star formation at z > 1 , 2014, 1411.2595.

[80]  Timothy D. Brandt,et al.  The delay-time distribution of Type Ia supernovae from Sloan II , 2012, 1206.0465.

[81]  A. Agnello,et al.  Reconciling mass estimates of ultradiffuse galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[82]  Gregory Hallenbeck,et al.  (Almost) Dark Galaxies in the ALFALFA Survey: Isolated H i-bearing Ultra-diffuse Galaxies , 2017, 1703.05293.

[83]  C. Pichon,et al.  The cosmic evolution of massive black holes in the Horizon-AGN simulation , 2016, 1602.01941.

[84]  K. Nomoto,et al.  Thermal Stability of White Dwarfs Accreting Hydrogen-rich Matter and Progenitors of Type Ia Supernovae , 2006, astro-ph/0603351.

[85]  S. Okamura,et al.  Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.

[86]  M. Valtonen,et al.  Tidal generation of active spirals and S0 galaxies by rich clusters , 1990 .

[87]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[88]  L. Blitz,et al.  THE ORIGIN AND LIFETIME OF GIANT MOLECULAR CLOUD COMPLEXES , 1980 .

[89]  P. Côté,et al.  Dark Matter in Ultra-diffuse Galaxies in the Virgo Cluster from Their Globular Cluster Populations , 2018, 1803.09768.

[90]  P. Norberg,et al.  Galaxy And Mass Assembly (GAMA) : detection of low-surface-brightness galaxies from SDSS data , 2016, 1609.01162.

[91]  S. Driver,et al.  The Millennium Galaxy Catalogue: the space density and surface-brightness distribution(s) of galaxies , 2005, astro-ph/0503228.

[92]  B. Willman,et al.  Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows , 2009, Nature.

[93]  F. Governato,et al.  Growing black holes and galaxies: black hole accretion versus star formation rate , 2015, 1502.06363.

[94]  A. S. Szalay,et al.  Galaxy Zoo: the fraction of merging galaxies in the SDSS and their morphologies , 2009, 0903.4937.

[95]  J. Neill,et al.  ON THE CLASSIFICATION OF UGC 1382 AS A GIANT LOW SURFACE BRIGHTNESS GALAXY , 2016, 1607.02147.

[96]  Caltech,et al.  The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations , 2015, 1507.02282.

[97]  R. Dettmar,et al.  Low surface brightness galaxies around the HDF-S II. Distances and volume densities , 2007, 0707.0492.

[98]  C. Lintott,et al.  Tidal dwarf galaxies in the nearby Universe , 2011, 1108.4410.

[99]  C. Brook,et al.  The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores , 2013, 1306.0898.

[100]  Naoj,et al.  APPROXIMATELY A THOUSAND ULTRA-DIFFUSE GALAXIES IN THE COMA CLUSTER , 2015, 1506.01712.

[101]  I. Trujillo,et al.  GLOBULAR CLUSTERS INDICATE THAT ULTRA-DIFFUSE GALAXIES ARE DWARFS , 2016, 1604.08024.

[102]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[103]  Pieter van Dokkum,et al.  Ultra–Low Surface Brightness Imaging with the Dragonfly Telephoto Array , 2014, 1401.5473.

[104]  Padova,et al.  On the environmental dependence of halo formation , 2004 .

[105]  C. Impey,et al.  Virgo dwarfs: new light on faint galaxies , 1988 .

[106]  C. Conselice Ultra-diffuse Galaxies Are a Subset of Cluster Dwarf Elliptical/Spheroidal Galaxies , 2018, 1803.06927.

[107]  M. Spavone,et al.  The Fornax Deep Survey with VST. III. Low surface brightness dwarfs and ultra diffuse galaxies in the center of the Fornax cluster , 2017, 1710.04616.

[108]  Ignacio Martin Navarro,et al.  AN OVERMASSIVE DARK HALO AROUND AN ULTRA-DIFFUSE GALAXY IN THE VIRGO CLUSTER , 2016, 1602.04002.

[109]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[110]  M. Bershady,et al.  Low Metallicities and Old Ages for Three Ultra-diffuse Galaxies in the Coma Cluster , 2017, 1709.07003.

[111]  M. Safarzadeh,et al.  The Fate of Gas-rich Satellites in Clusters , 2017, 1710.01319.

[112]  From tidal dwarf galaxies to satellite galaxies , 2006, astro-ph/0605350.

[113]  S. Driver,et al.  On the galaxy stellar mass function, the mass-metallicity relation, and the implied baryonic mass function , 2008, 0804.2892.

[114]  T. Treu,et al.  The bulge–halo conspiracy in massive elliptical galaxies: implications for the stellar initial mass function and halo response to baryonic processes , 2013, 1303.4389.

[115]  P. Wood,et al.  Evolution of Low- and Intermediate-Mass Stars to the End of the Asymptotic Giant Branch with Mass Loss , 1993 .

[116]  C. Brook,et al.  NIHAO XXI: the emergence of low surface brightness galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[117]  I. Trujillo,et al.  DEEP SURFACE BRIGHTNESS PROFILES OF SPIRAL GALAXIES FROM SDSS STRIPE82: TOUCHING STELLAR HALOS , 2012, 1204.3082.

[118]  Thomas H. Puzia,et al.  UNVEILING A RICH SYSTEM OF FAINT DWARF GALAXIES IN THE NEXT GENERATION FORNAX SURVEY , 2015, 1510.02475.

[119]  E. Cooke,et al.  What are protoclusters? – Defining high-redshift galaxy clusters and protoclusters , 2015, 1506.08835.

[120]  Alexie Leauthaud,et al.  Illuminating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey , 2017, 1709.04474.

[121]  S. Colombi,et al.  The origin and implications of dark matter anisotropic cosmic infall on ~L * haloes , 2004, astro-ph/0402405.

[122]  A. Sandage,et al.  Studies of the Virgo cluster. III - A classification system and an illustrated atlas of Virgo cluster dwarf galaxies , 1984 .

[123]  I. Paris,et al.  Identifying the progenitors of present-day early-type galaxies in observational surveys: Correcting 'progenitor bias' using the Horizon-AGN simulation , 2017, 1711.06694.

[124]  Cold dark matter heats up , 2014, Nature.

[125]  F. Hammer,et al.  A large sample of low surface brightness disc galaxies from the SDSS – I. The sample and the stellar populations , 2008, 0809.3099.

[126]  S. Phillipps,et al.  B and R CCD surface photometry of selected low surface brightness galaxies in the region of the Fornax cluster , 1990 .

[127]  S. Driver The Contribution of Normal, Dim, and Dwarf Galaxies to the Local Luminosity Density , 1999, The Astrophysical journal.

[128]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[129]  J. Silk,et al.  Total density profile of massive early-type galaxies in H orizon-AGN simulation: impact of AGN feedback and comparison with observations , 2018, Monthly Notices of the Royal Astronomical Society.

[130]  I. M. Stewart,et al.  The cosmological significance of low surface brightness galaxies found in a deep blind neutral hydrogen survey , 2004, astro-ph/0409628.

[131]  A. Loeb,et al.  Ultradiffuse galaxies: the high-spin tail of the abundant dwarf galaxy population , 2016, 1603.00463.

[132]  E. Grebel,et al.  Low Surface Brightness Galaxies in the Sloan Digital Sky Survey. I. Search Method and Test Sample , 2003, astro-ph/0310644.

[133]  C. Lintott,et al.  Normal black holes in bulge-less galaxies: the largely quiescent, merger-free growth of black holes over cosmic time , 2018, 1801.09699.

[134]  J. Silk,et al.  Density profile of dark matter haloes and galaxies in the Horizon-AGN simulation : the impact of AGN feedback , 2016, 1611.09922.

[135]  G. Gavazzi,et al.  Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA - II. Star formation properties of galaxies in the Virgo cluster and surroundings , 2013, 1303.2846.

[136]  R. Beaton,et al.  DISCOVERY OF AN ULTRA-DIFFUSE GALAXY IN THE PISCES-PERSEUS SUPERCLUSTER , 2016, 1601.06960.

[137]  I. Trujillo,et al.  Spatial distribution of ultra-diffuse galaxies within large-scale structures , 2016, 1603.03494.

[138]  R. Abraham,et al.  Evidence of Absence of Tidal Features in the Outskirts of Ultra Diffuse Galaxies in the Coma Cluster , 2017, 1710.03762.

[139]  J. Peñarrubia,et al.  Constraining the distribution of dark matter in dwarf spheroidal galaxies with stellar tidal streams , 2015, 1501.04968.

[140]  Cambridge,et al.  How supernova feedback turns dark matter cusps into cores , 2011, 1106.0499.

[141]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[142]  J. Silk,et al.  AGN feedback in dwarf galaxies , 2017, 1710.05900.

[143]  B. Gibson,et al.  Hierarchical formation of bulgeless galaxies: why outflows have low angular momentum , 2010, 1010.1004.

[144]  G. Ogiya Tidal stripping as a possible origin of the ultra diffuse galaxy lacking dark matter , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[145]  E. Cooke,et al.  Galaxy evolution in protoclusters , 2017, 1709.07009.

[146]  R. Abraham,et al.  A HIGH STELLAR VELOCITY DISPERSION AND ∼100 GLOBULAR CLUSTERS FOR THE ULTRA-DIFFUSE GALAXY DRAGONFLY 44 , 2016, 1606.06291.

[147]  V. Springel,et al.  Quenching and ram pressure stripping of simulated Milky Way satellite galaxies , 2017, 1705.03018.

[148]  F. Faifer,et al.  Stellar systems in the direction of the Hickson Compact Group 44 - I. Low surface brightness galaxies , 2016, 1609.00224.

[149]  Astrophysics,et al.  A RICH GLOBULAR CLUSTER SYSTEM IN DRAGONFLY 17: ARE ULTRA-DIFFUSE GALAXIES PURE STELLAR HALOS? , 2016, 1604.07496.

[150]  J. E. Gunn,et al.  The Number Density of Low Surface Brightness Galaxies with 23 , 1997 .

[151]  K. Bekki,et al.  The quenching and survival of ultra diffuse galaxies in the Coma cluster , 2015, 1507.05161.

[152]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[153]  C. Brook,et al.  NIHAO - XI. Formation of ultra-diffuse galaxies by outflows , 2016, 1608.01327.

[154]  G. Lake,et al.  Resolving the Structure of Cold Dark Matter Halos , 1997, astro-ph/9709051.

[155]  C. Impey,et al.  Extremely low surface brightness galaxies in the Fornax Cluster - Properties, stability, and luminosity fluctuations , 1991 .

[156]  B. Gibson,et al.  Hierarchical formation of bulgeless galaxies – II. Redistribution of angular momentum via galactic fountains , 2011, 1105.2562.

[157]  F. Matteucci,et al.  On the Typical Timescale for the Chemical Enrichment from Type Ia Supernovae in Galaxies , 2001, astro-ph/0105074.

[158]  Timothy A. Davis,et al.  The ATLAS3D project - VII. A new look at the morphology of nearby galaxies: the kinematic morphology-density relation , 2011, 1104.3545.

[159]  Pieter van Dokkum,et al.  THE DRAGONFLY NEARBY GALAXIES SURVEY. II. ULTRA-DIFFUSE GALAXIES NEAR THE ELLIPTICAL GALAXY NGC 5485 , 2016, 1610.01609.

[160]  T. Ichikawa,et al.  NOISE-BASED DETECTION AND SEGMENTATION OF NEBULOUS OBJECTS , 2015, 1505.01664.

[161]  T. Puzia,et al.  A Universe of ultradiffuse galaxies : theoretical predictions from ΛCDM simulations. , 2017, 1703.06147.

[162]  Simon Portegies Zwart,et al.  The effect of many minor mergers on the size growth of compact quiescent galaxies , 2013 .