On the microstructure and physical properties of untreated raffia textilis fiber

Abstract We report on the first measurements of the physico-mechanical properties of the raffia textilis fiber. This fiber is the epidermis of the leaflet and is used to fabricate many ethnographical items. Scanning electron microscopy reveals a layered structure: a top layer with a tile-like structure, and a bottom layer with a honeycomb-like structure. X-ray diffraction and FTIR-ATR show the presence of cellulose I β with a crystallinity index of 64%. Tensile tests give a Young’s modulus of 30 GPa, a tensile strength of 500 ± 97 MPa, and a total elongation between 2% and 4%. The fiber density is 0.75 ± 0.07, conferring to it the highest known specific mechanical properties among all studied raw vegetable fibers.

[1]  N. P. Barbosa,et al.  Behaviour of composite soil reinforced with natural fibres , 1999 .

[2]  D. J. Johnson,et al.  An empirical estimation of Scherrer parameters for the evaluation of true crystallite size in fibrous polymers , 1980 .

[3]  R. Séguéla,et al.  Thermal and mechanical behaviour of crystalline poly(ethylene terephthalate) : effects of high temperature annealing and tensile drawing , 1991 .

[4]  E. Wintermantel,et al.  Influence of the growth stage of industrial hemp on chemical and physical properties of the fibres , 2001 .

[5]  R. Joffe,et al.  Strength distribution of elementary flax fibres , 2005 .

[6]  Lennart Salmén,et al.  Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. , 2004, Carbohydrate research.

[7]  P. D. Dubrovski,et al.  Analysis of the Mechanical Properties of Woven and Nonwoven Fabrics as an Integral Part of Compound Fabrics , 2005 .

[8]  A. M. Hindeleh X-Ray Characterization of Viscose Rayon and the Significance of Crystallinity on Tensile Properties , 1980 .

[9]  Y. Hsieh,et al.  Single Fiber Strength Variations of Developing Cotton Fibers—Strength and Structure of G. hirsutum and G. barbedense , 2000 .

[10]  H. Binici,et al.  Investigation of fibre reinforced mud brick as a building material , 2005 .

[11]  K. Satyanarayana,et al.  An empirical evaluation of structure-property relationships in natural fibres and their fracture behaviour , 1986 .

[12]  D. M. Bruce,et al.  Effect of Environmental Relative Humidity and Damage on the Tensile Properties of Flax and Nettle Fibers , 1998 .

[13]  A. Błędzki,et al.  Composites reinforced with cellulose based fibres , 1999 .

[14]  N. Swamy,et al.  Bamboo and wood fibre cement composites for sustainable infrastructure regeneration , 2006 .

[15]  S. Eichhorn,et al.  Crystalline and amorphous deformation of process-controlled cellulose-II fibres , 2005 .

[16]  M. Misra,et al.  Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World , 2002, Renewable Energy.

[17]  C. Baley Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase , 2002 .

[18]  S. P. Firsov,et al.  Structural physico-chemistry of cellulose macromolecules. Vibrational spectra and structure of cellulose , 2002 .

[19]  P. S. Kumar,et al.  Characterization of ligno-cellulosic seed fibre from Wrightia Tinctoria plant for textile applications—an exploratory investigation , 2005 .

[20]  J. Sugiyama,et al.  Characterization of native crystalline cellulose in the cell walls of Oomycota , 1997 .

[21]  N. Reddy,et al.  Biofibers from agricultural byproducts for industrial applications. , 2005, Trends in biotechnology.

[22]  K. M. M. Rao,et al.  Extraction and tensile properties of natural fibers : Vakka, date and bamboo , 2007 .

[23]  V. Álvarez,et al.  Extraction of cellulose and preparation of nanocellulose from sisal fibers , 2008 .

[24]  Steven R. Shook,et al.  Literature review on use of nonwood plant fibers for building materials and panels , 1994 .

[25]  M. Sandy,et al.  Tensile testing of raffia , 2001 .

[26]  Narendra Reddy,et al.  Structure and properties of high quality natural cellulose fibers from cornstalks , 2005 .

[27]  J. Sugiyama,et al.  Combined infrared and electron diffraction study of the polymorphism of native celluloses , 1991 .

[28]  W. Park,et al.  Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. , 2005, Carbohydrate research.

[29]  J. Sugiyama,et al.  Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI , 1997 .

[30]  M. Ansell,et al.  Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization , 2002 .

[31]  R. Somashekar,et al.  Role of micro-crystalline parameters in the physical properties of cotton fibers , 2005 .

[32]  S. Monteiro,et al.  Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers , 2006 .