On the Hybrid Cerný-Road Coloring Problem and Hamiltonian Paths

The Hybrid Cerny-Road coloring problem is investigated for graphs with Hamiltonian paths. We prove that if an aperiodic, strongly connected digraph of costant outdegree with n vertices has an Hamiltonian path, then it admits a synchronizing coloring with a reset word of length 2(n - 2)(n - 1) + 1. The proof is based upon some new results concerning locally strongly transitive automata.

[1]  Mikhail V. Volkov,et al.  Synchronizing generalized monotonic automata , 2005, Theor. Comput. Sci..

[2]  Benjamin Weiss,et al.  Equivalence of topological Markov shifts , 1977 .

[3]  Rastislav Královič,et al.  Mathematical Foundations of Computer Science 2009, 34th International Symposium, MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceedings , 2009, MFCS.

[4]  Jarkko Kari,et al.  A Note on Synchronized Automata and Road Coloring Problem , 2002, Int. J. Found. Comput. Sci..

[5]  Arturo Carpi,et al.  On Synchronizing Unambiguous Automata , 1988, Theor. Comput. Sci..

[6]  Jarkko Kari,et al.  Synchronizing Finite Automata on Eulerian Digraphs , 2003, MFCS.

[7]  A. N. Trahtman The Černý Conjecture for Aperiodic Automata , 2005 .

[8]  L. Dubuc,et al.  Sur Les Automates Circulaires et la Conjecture de Cerný , 1998, RAIRO Theor. Informatics Appl..

[9]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[10]  A. N. Trahtman,et al.  The road coloring problem , 2007, 0709.0099.

[11]  Dominique Perrin,et al.  A Quadratic Upper Bound on the Size of a Synchronizing Word in One-Cluster Automata , 2009, Developments in Language Theory.

[12]  P. FRANKL,et al.  An Extremal Problem for two Families of Sets , 1982, Eur. J. Comb..

[13]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[14]  Jean-Éric Pin,et al.  Sur un Cas Particulier de la Conjecture de Cerny , 1978, ICALP.

[15]  I. K. Rystsov,et al.  Almost optimal bound of recurrent word length for regular automata , 1995 .

[16]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[17]  Flavio D'Alessandro,et al.  Strongly transitive automata and the Černý conjecture , 2009, Acta Informatica.

[18]  Flavio D'Alessandro,et al.  The Synchronization Problem for Locally Strongly Transitive Automata , 2009, MFCS.

[19]  Wojciech Rytter,et al.  On the Maximal Number of Cubic Runs in a String , 2010, LATA.

[20]  Benjamin Steinberg The Averaging Trick and the Cerný Conjecture , 2010, Developments in Language Theory.

[21]  Mikhail V. Volkov,et al.  Synchronizing Automata and the Cerny Conjecture , 2008, LATA.

[22]  Dominique Perrin,et al.  A Quadratic Upper Bound on the Size of a Synchronizing Word in One-Cluster Automata , 2011, Int. J. Found. Comput. Sci..