On the Hybrid Cerný-Road Coloring Problem and Hamiltonian Paths
暂无分享,去创建一个
[1] Mikhail V. Volkov,et al. Synchronizing generalized monotonic automata , 2005, Theor. Comput. Sci..
[2] Benjamin Weiss,et al. Equivalence of topological Markov shifts , 1977 .
[3] Rastislav Královič,et al. Mathematical Foundations of Computer Science 2009, 34th International Symposium, MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceedings , 2009, MFCS.
[4] Jarkko Kari,et al. A Note on Synchronized Automata and Road Coloring Problem , 2002, Int. J. Found. Comput. Sci..
[5] Arturo Carpi,et al. On Synchronizing Unambiguous Automata , 1988, Theor. Comput. Sci..
[6] Jarkko Kari,et al. Synchronizing Finite Automata on Eulerian Digraphs , 2003, MFCS.
[7] A. N. Trahtman. The Černý Conjecture for Aperiodic Automata , 2005 .
[8] L. Dubuc,et al. Sur Les Automates Circulaires et la Conjecture de Cerný , 1998, RAIRO Theor. Informatics Appl..
[9] Robin Milner,et al. On Observing Nondeterminism and Concurrency , 1980, ICALP.
[10] A. N. Trahtman,et al. The road coloring problem , 2007, 0709.0099.
[11] Dominique Perrin,et al. A Quadratic Upper Bound on the Size of a Synchronizing Word in One-Cluster Automata , 2009, Developments in Language Theory.
[12] P. FRANKL,et al. An Extremal Problem for two Families of Sets , 1982, Eur. J. Comb..
[13] Jean Berstel,et al. Rational series and their languages , 1988, EATCS monographs on theoretical computer science.
[14] Jean-Éric Pin,et al. Sur un Cas Particulier de la Conjecture de Cerny , 1978, ICALP.
[15] I. K. Rystsov,et al. Almost optimal bound of recurrent word length for regular automata , 1995 .
[16] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[17] Flavio D'Alessandro,et al. Strongly transitive automata and the Černý conjecture , 2009, Acta Informatica.
[18] Flavio D'Alessandro,et al. The Synchronization Problem for Locally Strongly Transitive Automata , 2009, MFCS.
[19] Wojciech Rytter,et al. On the Maximal Number of Cubic Runs in a String , 2010, LATA.
[20] Benjamin Steinberg. The Averaging Trick and the Cerný Conjecture , 2010, Developments in Language Theory.
[21] Mikhail V. Volkov,et al. Synchronizing Automata and the Cerny Conjecture , 2008, LATA.
[22] Dominique Perrin,et al. A Quadratic Upper Bound on the Size of a Synchronizing Word in One-Cluster Automata , 2011, Int. J. Found. Comput. Sci..