Molecular Understanding of ER-MT Communication Dysfunction during Neurodegeneration.

[1]  T. Behl,et al.  Involvement of molecular chaperone in protein-misfolding brain diseases. , 2022, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[2]  Lin F. Yang,et al.  Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019 , 2022, The Lancet. Public health.

[3]  B. Taksande,et al.  Alzheimer's disease and sleep disorders: Insights into the possible disease connections and the potential therapeutic targets. , 2021, Asian journal of psychiatry.

[4]  B. Taksande,et al.  Interweaving of Reactive Oxygen Species and Major Neurological and Psychiatric Disorders. , 2021, Annales pharmaceutiques francaises.

[5]  S. Bhatia,et al.  Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. , 2021, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[6]  B. Taksande,et al.  Neurodegenerative disorders associated with genes of mitochondria , 2021, Future Journal of Pharmaceutical Sciences.

[7]  C. Graff,et al.  Amyloid β-Peptide Increases Mitochondria-Endoplasmic Reticulum Contact Altering Mitochondrial Function and Autophagosome Formation in Alzheimer’s Disease-Related Models , 2020, Cells.

[8]  A. Shah,et al.  Nox4 regulates InsP3 receptor‐dependent Ca2+ release into mitochondria to promote cell survival , 2020, The EMBO journal.

[9]  M. M. Aglawe,et al.  Agmatine modulates anxiety and depression-like behaviour in diabetic insulin-resistant rats , 2020, Brain Research.

[10]  G. Christoph Mitochondrial F-ATP synthase as the permeability transition pore. , 2020, Pharmacological research.

[11]  P. Pinton,et al.  Physiopathology of the Permeability Transition Pore: Molecular Mechanisms in Human Pathology , 2020, Biomolecules.

[12]  M. Giacomello,et al.  Chemical Modulation of Mitochondria–Endoplasmic Reticulum Contact Sites , 2020, Cells.

[13]  F. Siena,et al.  Parkinson’s disease: current assessment methods and wearable devices for evaluation of movement disorder motor symptoms - a patient and healthcare professional perspective , 2020, BMC Neurology.

[14]  T. Dawson,et al.  PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson’s disease , 2020, Molecular Neurodegeneration.

[15]  L. Lackner,et al.  Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology , 2020, The Journal of cell biology.

[16]  E. Ziviani,et al.  A trio has turned into a quartet: DJ-1 interacts with the IP3R-Grp75-VDAC complex to control ER-mitochondria interaction. , 2020, Cell calcium.

[17]  V. Giorgio,et al.  Defective Mitochondrial Pyruvate Flux Affects Cell Bioenergetics in Alzheimer's Disease-Related Models. , 2020, Cell reports.

[18]  T. Pozzan,et al.  Intracellular Calcium Dysregulation by the Alzheimer’s Disease-Linked Protein Presenilin 2 , 2020, International journal of molecular sciences.

[19]  T. Toyofuku,et al.  LRRK2 regulates endoplasmic reticulum–mitochondrial tethering through the PERK‐mediated ubiquitination pathway , 2019, The EMBO journal.

[20]  S. Wilton,et al.  ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? , 2019, Front. Neurosci..

[21]  R. Krüger,et al.  Variants in Miro1 Cause Alterations of ER-Mitochondria Contact Sites in Fibroblasts from Parkinson’s Disease Patients , 2019, Journal of clinical medicine.

[22]  Xiongwei Zhu,et al.  DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-Grp75-VDAC1 , 2019, Proceedings of the National Academy of Sciences.

[23]  T. Wisniewski,et al.  Perturbed mitochondria–ER contacts in live neurons that model the amyloid pathology of Alzheimer's disease , 2019, Journal of Cell Science.

[24]  Hong-Gang Wang,et al.  TOM40 Targets Atg2 to Mitochondria-Associated ER Membranes for Phagophore Expansion , 2019, Cell reports.

[25]  S. Yanagi,et al.  MITOL deletion in the brain impairs mitochondrial structure and ER tethering leading to oxidative stress , 2019, Life Science Alliance.

[26]  T. Uehara,et al.  MITOL prevents ER stress‐induced apoptosis by IRE1α ubiquitylation at ER–mitochondria contact sites , 2019, The EMBO journal.

[27]  L. Martins,et al.  Forcing contacts between mitochondria and the endoplasmic reticulum extends lifespan in a Drosophila model of Alzheimer's disease , 2019, Biology Open.

[28]  Marie E Bellet,et al.  Mutations in RHOT1 Disrupt Endoplasmic Reticulum–Mitochondria Contact Sites Interfering with Calcium Homeostasis and Mitochondrial Dynamics in Parkinson's Disease , 2019, Antioxidants & redox signaling.

[29]  S. Shah,et al.  EARLY DEMENTIA AND EPIGENETICS OF ALZHEIMER'S DISEASE: A CLINICAL APPROACH , 2019, Alzheimer's & Dementia.

[30]  M. Peitsch,et al.  Mitochondria as a possible target for nicotine action , 2019, Journal of Bioenergetics and Biomembranes.

[31]  T. Namba,et al.  BAP31 regulates mitochondrial function via interaction with Tom40 within ER-mitochondria contact sites , 2019, Science Advances.

[32]  M. Wimmer,et al.  Crosstalks of the PTPIP51 interactome revealed in Her2 amplified breast cancer cells by the novel small molecule LDC3/Dynarrestin , 2019, PloS one.

[33]  W. Noble,et al.  The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity , 2019, Acta neuropathologica communications.

[34]  P. Kulkarni,et al.  In search of early neuroradiological biomarkers for Parkinson’s Disease: Alterations in resting state functional connectivity and gray matter microarchitecture in PINK1 −/− rats , 2019, Brain Research.

[35]  C. Villalobos,et al.  Amyloid β Oligomers Increase ER-Mitochondria Ca2+ Cross Talk in Young Hippocampal Neurons and Exacerbate Aging-Induced Intracellular Ca2+ Remodeling , 2019, Front. Cell. Neurosci..

[36]  C. Angelini,et al.  Regulation of ER‐mitochondria contacts by Parkin via Mfn2 , 2018, Pharmacological research.

[37]  H. Ren,et al.  Loss of VAPB Regulates Autophagy in a Beclin 1-Dependent Manner , 2018, Neuroscience Bulletin.

[38]  G. Dorn,et al.  MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A , 2018, Science.

[39]  H. Schöler,et al.  Dynarrestin, a Novel Inhibitor of Cytoplasmic Dynein. , 2018, Cell chemical biology.

[40]  V. De Pinto,et al.  VDAC1 as Pharmacological Target in Cancer and Neurodegeneration: Focus on Its Role in Apoptosis , 2018, Front. Chem..

[41]  Thomas M. Durcan,et al.  Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy , 2018, eLife.

[42]  G. Juhász,et al.  Early Presymptomatic Changes in the Proteome of Mitochondria-Associated Membrane in the APP/PS1 Mouse Model of Alzheimer’s Disease , 2018, Molecular Neurobiology.

[43]  M. Ankarcrona,et al.  TOM70 Sustains Cell Bioenergetics by Promoting IP3R3-Mediated ER to Mitochondria Ca2+ Transfer , 2018, Current Biology.

[44]  C. Ballard,et al.  Mitochondrial Translocase of the Outer Membrane Alterations May Underlie Dysfunctional Oxidative Phosphorylation in Alzheimer's Disease. , 2017, Journal of Alzheimer's disease : JAD.

[45]  Yusuke Hirabayashi,et al.  ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons , 2017, Science.

[46]  C. Moussa,et al.  Resveratrol for Alzheimer's disease , 2017, Annals of the New York Academy of Sciences.

[47]  Xiongwei Zhu,et al.  Endoplasmic reticulum-mitochondria tethering in neurodegenerative diseases , 2017, Translational Neurodegeneration.

[48]  Harald F Hess,et al.  Contacts between the endoplasmic reticulum and other membranes in neurons , 2017, Proceedings of the National Academy of Sciences.

[49]  Michael W. Davidson,et al.  Applying systems-level spectral imaging and analysis to reveal the organelle interactome , 2017, Nature.

[50]  Andrew J. F. Valente,et al.  Resveratrol stimulates mitochondrial fusion by a mechanism requiring mitofusin-2. , 2017, Biochemical and biophysical research communications.

[51]  M. Korte,et al.  Not just amyloid: physiological functions of the amyloid precursor protein family , 2017, Nature Reviews Neuroscience.

[52]  Michael J. Devine,et al.  α-Synuclein binds to the ER–mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production , 2017, Acta Neuropathologica.

[53]  S. P. Andrews,et al.  Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities , 2017, Neuron.

[54]  E. Valente,et al.  PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation , 2017, Autophagy.

[55]  W. Noble,et al.  The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy , 2017, Current Biology.

[56]  F. Checler,et al.  Localization and Processing of the Amyloid-β Protein Precursor in Mitochondria-Associated Membranes , 2016, Journal of Alzheimer's disease : JAD.

[57]  Jungil Choi,et al.  Trifluoperazine, a Well-Known Antipsychotic, Inhibits Glioblastoma Invasion by Binding to Calmodulin and Disinhibiting Calcium Release Channel IP3R , 2016, Molecular Cancer Therapeutics.

[58]  H. Kiyama,et al.  Mitochondria‐associated membrane collapse is a common pathomechanism in SIGMAR1‐ and SOD1‐linked ALS , 2016, EMBO molecular medicine.

[59]  G. Dorn,et al.  Correcting mitochondrial fusion by manipulating mitofusin conformations , 2016, Nature.

[60]  Luca Scorrano,et al.  Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum–mitochondria tether , 2016, Proceedings of the National Academy of Sciences.

[61]  Benjamin Gottschalk,et al.  Resveratrol Specifically Kills Cancer Cells by a Devastating Increase in the Ca2+ Coupling Between the Greatly Tethered Endoplasmic Reticulum and Mitochondria , 2016, Cellular Physiology and Biochemistry.

[62]  D. Mochly‐Rosen,et al.  The entangled ER-mitochondrial axis as a potential therapeutic strategy in neurodegeneration: A tangled duo unchained. , 2016, Cell calcium.

[63]  A. Chiò,et al.  Projected increase in amyotrophic lateral sclerosis from 2015 to 2040 , 2016, Nature Communications.

[64]  P. Várnai,et al.  Redox Nanodomains Are Induced by and Control Calcium Signaling at the ER-Mitochondrial Interface. , 2016, Molecular cell.

[65]  C. Shaw,et al.  ALS/FTD‐associated FUS activates GSK‐3β to disrupt the VAPB–PTPIP51 interaction and ER–mitochondria associations , 2016, EMBO reports.

[66]  L. Pellegrini,et al.  The coming of age of the mitochondria–ER contact: a matter of thickness , 2016, Cell Death and Differentiation.

[67]  A. Luini,et al.  Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2. , 2016, Cell reports.

[68]  N. Wood,et al.  Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson's disease , 2016, Cell Death and Disease.

[69]  M. Ankarcrona,et al.  Mitofusin‐2 knockdown increases ER–mitochondria contact and decreases amyloid β‐peptide production , 2016, Journal of cellular and molecular medicine.

[70]  B. Lu,et al.  Polo Kinase Phosphorylates Miro to Control ER-Mitochondria Contact Sites and Mitochondrial Ca(2+) Homeostasis in Neural Stem Cell Development. , 2016, Developmental cell.

[71]  U. Sengupta,et al.  The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy , 2016, EBioMedicine.

[72]  L. Schneider,et al.  Defeating Alzheimer's disease and other dementias: a priority for European science and society , 2016, The Lancet Neurology.

[73]  Christopher C. J. Miller,et al.  There's Something Wrong with my MAM; the ER–Mitochondria Axis and Neurodegenerative Diseases , 2016, Trends in Neurosciences.

[74]  Y. Sekino,et al.  Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells. , 2016, Biochemical and biophysical research communications.

[75]  B. Asselbergh,et al.  Mitochondria-associated membranes as hubs for neurodegeneration , 2016, Acta Neuropathologica.

[76]  Jun O. Liu,et al.  Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells , 2015, Proceedings of the National Academy of Sciences.

[77]  Jeffrey A. Golden,et al.  Hereditary spastic paraplegia‐linked REEP1 modulates endoplasmic reticulum/mitochondria contacts , 2015, Annals of neurology.

[78]  Robert H. Brown,et al.  Age-Dependent TDP-43-Mediated Motor Neuron Degeneration Requires GSK3, hat-trick, and xmas-2 , 2015, Current Biology.

[79]  R. Lees,et al.  Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells , 2015, International journal of molecular sciences.

[80]  R. Chrast,et al.  Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. , 2015, Brain : a journal of neurology.

[81]  Yanzhuang Wang,et al.  Golgi defects enhance APP amyloidogenic processing in Alzheimer's disease , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[82]  Victor S. Van Laar,et al.  Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy , 2015, Neurobiology of Disease.

[83]  J. Vance Phospholipid Synthesis and Transport in Mammalian Cells , 2015, Traffic.

[84]  Yue-Ming Li,et al.  Complex regulation of γ-secretase: from obligatory to modulatory subunits , 2014, Front. Aging Neurosci..

[85]  H. McBride,et al.  A Mitofusin-2–dependent inactivating cleavage of Opa1 links changes in mitochondria cristae and ER contacts in the postprandial liver , 2014, Proceedings of the National Academy of Sciences.

[86]  G. Halliday,et al.  Alpha-synuclein biology in Lewy body diseases , 2014, Alzheimer's Research & Therapy.

[87]  P. Agostinis,et al.  New functions of mitochondria associated membranes in cellular signaling. , 2014, Biochimica et biophysica acta.

[88]  L. Petrucelli,et al.  ER–mitochondria associations are regulated by the VAPB–PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43 , 2014, Nature Communications.

[89]  J. Vance MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. , 2014, Biochimica et biophysica acta.

[90]  B. Westermann,et al.  Mitochondrial ER contacts are crucial for mitophagy in yeast. , 2014, Developmental cell.

[91]  E. Schon,et al.  α-Synuclein Is Localized to Mitochondria-Associated ER Membranes , 2014, The Journal of Neuroscience.

[92]  M. Palacín,et al.  Mfn2 modulates the UPR and mitochondrial function via repression of PERK , 2013, The EMBO journal.

[93]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[94]  B. Winblad,et al.  Modulation of the endoplasmic reticulum–mitochondria interface in Alzheimer’s disease and related models , 2013, Proceedings of the National Academy of Sciences.

[95]  A. Negro,et al.  Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca(2+) transfer to sustain cell bioenergetics. , 2013, Biochimica et biophysica acta.

[96]  Yasushi Hiraoka,et al.  Autophagosomes form at ER–mitochondria contact sites , 2013, Nature.

[97]  I. Parker,et al.  Cytotoxicity of Intracellular Aβ42 Amyloid Oligomers Involves Ca2+ Release from the Endoplasmic Reticulum by Stimulated Production of Inositol Trisphosphate , 2013, The Journal of Neuroscience.

[98]  J. Kolesar,et al.  MCUR1 is an Essential Component of Mitochondrial Ca2+ Uptake that Regulates Cellular Metabolism , 2012, Nature Cell Biology.

[99]  L. Orci,et al.  Mitofusin-2 Independent Juxtaposition of Endoplasmic Reticulum and Mitochondria: An Ultrastructural Study , 2012, PloS one.

[100]  E. Schon,et al.  Upregulated function of mitochondria-associated ER membranes in Alzheimer disease , 2012, The EMBO journal.

[101]  D. Price,et al.  Rodent models of TDP-43: Recent advances , 2012, Brain Research.

[102]  P. Agostinis,et al.  PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress , 2012, Cell Death and Differentiation.

[103]  Qian Cai,et al.  Spatial Parkin Translocation and Degradation of Damaged Mitochondria via Mitophagy in Live Cortical Neurons , 2012, Current Biology.

[104]  F. Al-Mohanna,et al.  A mutation in sigma‐1 receptor causes juvenile amyotrophic lateral sclerosis , 2011, Annals of neurology.

[105]  J. Varner,et al.  A review of the mammalian unfolded protein response , 2011, Biotechnology and bioengineering.

[106]  C. Shaw,et al.  VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis , 2011, Human molecular genetics.

[107]  Xinnan Wang,et al.  PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility , 2011, Cell.

[108]  Matthew West,et al.  ER Tubules Mark Sites of Mitochondrial Division , 2011, Science.

[109]  Carlotta Giorgi,et al.  Calcium signaling around Mitochondria Associated Membranes (MAMs) , 2011, Cell Communication and Signaling.

[110]  P. Walter,et al.  The conserved GTPase Gem1 regulates endoplasmic reticulum–mitochondria connections , 2011, Proceedings of the National Academy of Sciences.

[111]  J. Vicencio,et al.  Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress , 2011, Journal of Cell Science.

[112]  R. Rizzuto,et al.  A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter , 2011, Nature.

[113]  V. Mootha,et al.  Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter , 2011, Nature.

[114]  David S. Park,et al.  Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress , 2011, Cell Death and Differentiation.

[115]  M. Kawahara,et al.  Membrane Incorporation, Channel Formation, and Disruption of Calcium Homeostasis by Alzheimer's β-Amyloid Protein , 2011, International journal of Alzheimer's disease.

[116]  S. Grimm,et al.  Fis1 and Bap31 bridge the mitochondria–ER interface to establish a platform for apoptosis induction , 2011, The EMBO journal.

[117]  Huaxi Xu,et al.  APP processing in Alzheimer's disease , 2011, Molecular Brain.

[118]  S. Buch,et al.  The sigma-1 receptor chaperone as an inter-organelle signaling modulator. , 2010, Trends in pharmacological sciences.

[119]  M. Birnbaum,et al.  Essential Regulation of Cell Bioenergetics by Constitutive InsP3 Receptor Ca2+ Transfer to Mitochondria , 2010, Cell.

[120]  M. Bortolozzi,et al.  Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. , 2010, Molecular cell.

[121]  T. Zako,et al.  Amyloid oligomers: formation and toxicity of Aβ oligomers , 2010, The FEBS journal.

[122]  D. Klionsky,et al.  Regulation mechanisms and signaling pathways of autophagy. , 2009, Annual review of genetics.

[123]  G. Hajnóczky,et al.  SR/ER-mitochondrial local communication: calcium and ROS. , 2009, Biochimica et biophysica acta.

[124]  R. Denton,et al.  Regulation of mitochondrial dehydrogenases by calcium ions. , 2009, Biochimica et biophysica acta.

[125]  George Perry,et al.  Impaired Balance of Mitochondrial Fission and Fusion in Alzheimer's Disease , 2009, The Journal of Neuroscience.

[126]  M. Cookson,et al.  Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. , 2009, Biochemistry.

[127]  M. Yeckel,et al.  2-Aminoethoxydiphenyl-borate (2-APB) increases excitability in pyramidal neurons. , 2009, Cell calcium.

[128]  R. Rizzuto,et al.  Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. , 2008, Molecular cell.

[129]  L. Scorrano,et al.  Mitofusin 2 tethers endoplasmic reticulum to mitochondria , 2008, Nature.

[130]  P. Pinton,et al.  Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis , 2008, Oncogene.

[131]  B. Winblad,et al.  The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae , 2008, Proceedings of the National Academy of Sciences.

[132]  Teruo Hayashi,et al.  Sigma-1 Receptor Chaperones at the ER- Mitochondrion Interface Regulate Ca2+ Signaling and Cell Survival , 2007, Cell.

[133]  J S Armstrong,et al.  Mitochondrial Medicine: Pharmacological targeting of mitochondria in disease , 2007, British journal of pharmacology.

[134]  P. Várnai,et al.  Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels , 2006, The Journal of cell biology.

[135]  C. Mannella,et al.  Structural and functional features and significance of the physical linkage between ER and mitochondria , 2006, The Journal of cell biology.

[136]  Ian Parker,et al.  Calcium Dysregulation and Membrane Disruption as a Ubiquitous Neurotoxic Mechanism of Soluble Amyloid Oligomers*♦ , 2005, Journal of Biological Chemistry.

[137]  L. Wan,et al.  PACS‐2 controls endoplasmic reticulum–mitochondria communication and Bid‐mediated apoptosis , 2005, The EMBO journal.

[138]  S. Snyder,et al.  Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis , 2003, Nature Cell Biology.

[139]  K. Mihara,et al.  Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. , 2003, Journal of biochemistry.

[140]  B. Strooper,et al.  Aph-1, Pen-2, and Nicastrin with Presenilin Generate an Active γ-Secretase Complex , 2003, Neuron.

[141]  R. Kaufman,et al.  The mammalian unfolded protein response. , 2003, Annual review of biochemistry.

[142]  C. Haass,et al.  Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts , 2003, The Journal of cell biology.

[143]  J. Tillement,et al.  In vitro effects of nicotine on mitochondrial respiration and superoxide anion generation , 2001, Brain Research.

[144]  Anne Bertolotti,et al.  Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response , 2000, Nature Cell Biology.

[145]  P. Branton,et al.  p28 Bap31, a Bcl-2/Bcl-XL- and Procaspase-8–associated Protein in the Endoplasmic Reticulum , 1997, The Journal of cell biology.

[146]  J. Vance,et al.  Abnormalities in mitochondria-associated membranes and phospholipid biosynthetic enzymes in the mnd/mnd mouse model of neuronal ceroid lipofuscinosis. , 1997, Biochimica et biophysica acta.

[147]  W. Bernhard,et al.  CLOSE TOPOGRAPHICAL RELATIONSHIP BETWEEN MITOCHONDRIA AND ERGASTOPLASM OF LIVER CELLS IN A DEFINITE PHASE OF CELLULAR ACTIVITY , 1956, The Journal of biophysical and biochemical cytology.

[148]  H. Zischka,et al.  Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. , 2018, International review of cell and molecular biology.

[149]  P. Agostinho,et al.  Localization and Trafficking of Amyloid-β Protein Precursor and Secretases: Impact on Alzheimer's Disease. , 2015, Journal of Alzheimer's disease : JAD.

[150]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[151]  F. LaFerla,et al.  Alzheimer's disease. , 2010, The New England journal of medicine.