Metaheuristics-based parametric optimization of multi-pass turning process: a comparative analysis

In a multi-pass turning process, determination of the optimal values for different machining process parameters has already been identified as a complex optimization problem due to the involvement of numerous real time constraints. In this paper, six metaheuristics, such as artificial bee colony algorithm, ant colony optimization, particle swarm optimization, differential evolution algorithm, firefly algorithm and teaching–learning-based optimization algorithm are implemented to estimate the minimum unit production costs for two different part configurations while fulfilling a given set of machining constraints. It is observed that for both the cases, teaching–learning-based optimization algorithm supersedes the remaining optimization techniques with respect to various predetermined performance measures. Two statistical tests, i.e. paired t test and Wilcoxson signed rank test, also prove the uniqueness of this algorithm as compared to the others.

[1]  Tomohisa Tanaka,et al.  Optimization of Multipass Turning Parameters by Genetic Algorithm , 2011 .

[2]  Indrajit Mukherjee,et al.  A review of optimization techniques in metal cutting processes , 2006, Comput. Ind. Eng..

[3]  Yung C. Shin,et al.  Optimization of machining conditions with practical constraints , 1992 .

[4]  B. Naithani,et al.  Mathematical modelling approach for determining optimal machining parameters in turning with computer numerical control (CNC) machines , 2012, Int. J. Comput. Aided Eng. Technol..

[5]  Yong Wang,et al.  Optimization of multi-pass turning parameters through an improved flower pollination algorithm , 2017 .

[6]  Abdelouahhab Jabri,et al.  Multipass Turning Operation Process Optimization Using Hybrid Genetic Simulated Annealing Algorithm , 2017 .

[7]  Uday S. Dixit,et al.  Application of soft computing techniques in machining performance prediction and optimization: a literature review , 2010 .

[8]  Orhan Engin,et al.  Using ant colony optimization to solve hybrid flow shop scheduling problems , 2007 .

[9]  Ali R. Yildiz,et al.  A comparative study of population-based optimization algorithms for turning operations , 2012, Inf. Sci..

[10]  Ali R. Yildiz,et al.  Optimization of multi-pass turning operations using hybrid teaching learning-based approach , 2013 .

[11]  Bhaskar Naithani,et al.  Optimisation of machining parameters for CNC turned cylindrical components using genetic algorithms , 2014, Int. J. Comput. Aided Eng. Technol..

[12]  R. Venkata Rao,et al.  Multi-pass turning process parameter optimization using teaching–learning-based optimization algorithm , 2013 .

[13]  Ramón Quiza Sardiñas,et al.  Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes , 2006, Eng. Appl. Artif. Intell..

[14]  Antonio Costa,et al.  Optimization of multi-pass turning economies through a hybrid particle swarm optimization technique , 2011 .

[15]  Dinesh Singh,et al.  Selection of parameters for advanced machining processes using firefly algorithm , 2017 .

[16]  Voratas Kachitvichyanukul,et al.  Comparison of Three Evolutionary Algorithms: GA, PSO, and DE , 2012 .

[17]  Abderrahim Belloufi,et al.  Optimization of Cutting Conditions in Multi-Pass Turning Using Hybrid Genetic Algorithm-Sequential Quadratic Programming , 2012 .

[18]  S. Xie,et al.  Optimisation of machining parameters in multi-pass turnings using ant colony optimisations , 2012 .

[19]  Majed Ghayyem,et al.  A Novel Optimization Approach Applied to Multi-Pass Turning Process , 2017 .

[20]  Abderrahim Belloufi,et al.  Intelligent selection of machining parameters in multipass turnings using firefly algorithm , 2014 .

[21]  S. G. Ponnambalam,et al.  Optimisation of multipass turning operations using PSO and GA-AIS algorithms , 2012 .

[22]  R. Saravanan,et al.  Optimization of cutting conditions during continuous finished profile machining using non-traditional techniques , 2005 .

[23]  Apostolos Korlos,et al.  Optimal Solution of Multi-Pass Turning Processes by Means of the Differential Evolutionary Algorithm for Constraint Problems , 2015 .

[24]  R V Rao,et al.  Parameters optimization of advanced machining processes using TLBO algorithm , 2011 .

[25]  Abdelouahhab Jabri,et al.  Multi-objective optimization using genetic algorithms of multi-pass turning process , 2013, Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM).

[26]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[27]  Edward J. Williams,et al.  Cuckoo optimization algorithm for unit production cost in multi-pass turning operations , 2015 .

[28]  Junjie Li,et al.  An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis , 2013 .

[29]  Ali R. Yildiz,et al.  Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations , 2013, Appl. Soft Comput..

[30]  Ali R. Yildiz,et al.  Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach , 2013, Inf. Sci..

[31]  R. Venkata Rao,et al.  Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm , 2013, Eng. Appl. Artif. Intell..