Combining RMT-based filtering with time-stamped resampling for robust portfolio optimization

AbstractFinding the optimal weights for a set of financial assets is a difficult task. The mix of real world constrains and the uncertainty derived from the fact that process is based on estimates for parameters that likely to be inaccurate, often result in poor results. This paper suggests that a combination of a filtering mechanism based on random matrix theory with time-stamped resampled evolutionary multiobjective optimization algorithms enhances the robustness of forecasted efficient frontiers.

[1]  Kalyanmoy Deb,et al.  Introducing Robustness in Multi-Objective Optimization , 2006, Evolutionary Computation.

[2]  Enrique Alba,et al.  SMPSO: A new PSO-based metaheuristic for multi-objective optimization , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[3]  Anna Grazia Quaranta,et al.  Robust optimization of conditional value at risk and portfolio selection , 2008 .

[4]  Konstantinos P. Anagnostopoulos,et al.  The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms , 2011, Expert Syst. Appl..

[5]  Keshav P. Dahal,et al.  Portfolio optimization using multi-obj ective genetic algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[6]  V. Plerou,et al.  A random matrix theory approach to financial cross-correlations , 2000 .

[7]  Hiroaki Ishii,et al.  Robust Mean-Variance Portfolio Selection Problem Including Fuzzy Factors , 2008 .

[8]  Milan Borkovec,et al.  Robust Portfolio Rebalancing with Transaction Cost Penalty an Empirical Analysis , 2011 .

[9]  O. Costa,et al.  Robust portfolio selection using linear-matrix inequalities , 2002 .

[10]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[11]  Inés María Galván,et al.  Time-stamped resampling for robust evolutionary portfolio optimization , 2012, Expert Syst. Appl..

[12]  Konstantinos P. Anagnostopoulos,et al.  Multiobjective evolutionary algorithms for complex portfolio optimization problems , 2011, Comput. Manag. Sci..

[13]  Anirvan M. Sengupta,et al.  Distributions of singular values for some random matrices. , 1997, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[15]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[16]  M. Crane,et al.  Random matrix theory for portfolio optimization: a stability approach , 2004 .

[17]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[18]  Heather J. Ruskin,et al.  Random matrix theory filters in portfolio optimisation: A stability and risk assessment , 2008 .

[19]  A. ilinskas Evolutionary Methods for Multi-Objective Portfolio Optimization , 2008 .

[20]  J. Bouchaud,et al.  RANDOM MATRIX THEORY AND FINANCIAL CORRELATIONS , 2000 .

[21]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[22]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[23]  Antonio J. Nebro,et al.  A new PSO-based metaheuristic for multi-objective optimization , 2009 .

[24]  Kalyanmoy Deb,et al.  Bi-objective Portfolio Optimization Using a Customized Hybrid NSGA-II Procedure , 2011, EMO.

[25]  Konstantinos Liagkouras,et al.  Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review , 2012, Expert Syst. Appl..

[26]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[27]  Amparo Medal,et al.  Efficient Diversification of International Investments: The Spanish Point of View , 1999 .

[28]  Daniel Kuhn,et al.  Robust portfolio optimization with derivative insurance guarantees , 2011, Eur. J. Oper. Res..

[29]  Helio J. C. Barbosa,et al.  A genetic algorithm encoding for a class of cardinality constraints , 2005, GECCO '05.

[30]  Tri-Dung Nguyen,et al.  Robust ranking and portfolio optimization , 2012, Eur. J. Oper. Res..

[31]  Laurent El Ghaoui,et al.  Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach , 2003, Oper. Res..

[32]  Fang Han,et al.  Robust Portfolio Optimization , 2015, NIPS.

[33]  A. Žilinskas,et al.  Evolutionary Methods for Multi-Objective Portfolio Optimization , 2022 .

[34]  G. Pflug,et al.  Ambiguity in portfolio selection , 2007 .

[35]  Reha H. Tütüncü,et al.  Robust Asset Allocation , 2004, Ann. Oper. Res..

[36]  Jürgen Branke,et al.  Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation , 2006, IEEE Transactions on Evolutionary Computation.

[37]  Wojtek J. Krzanowski,et al.  Sensitivity of Principal Components , 1984 .