Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay

We consider distributed stabilization of 1-D Korteweg–de Vries–Burgers (KdVB) equation in the presence of constant input delay. The delay may be uncertain, but bounded by a known upper bound. On the basis of spatially distributed (either point or averaged) measurements, we design a regionally stabilizing controller applied through distributed in space shape functions. The existing Lyapunov–Krasovskii functionals for heat equation that depend on the state derivative are not applicable to KdVB equation because of the third order partial derivative. We suggest a new Lyapunov–Krasovskii functional that leads to regional stability conditions of the closed-loop system in terms of linear matrix inequalities (LMIs). By solving these LMIs, an upper bound on the delay that preserves regional stability can be found, together with an estimate on the set of initial conditions starting from which the state trajectories of the system are exponentially converging to zero. This estimate includes a priori Lyapunov-based bounds on the solutions of the open-loop system on the initial time interval of the length of delay. Numerical examples illustrate the efficiency of the method.

[1]  M. Krstić Delay Compensation for Nonlinear, Adaptive, and PDE Systems , 2009 .

[2]  Edriss S. Titi,et al.  Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study , 2015, 1506.03709.

[3]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[4]  Emilia Fridman,et al.  Sampled-Data Distributed HINFINITY Control of Transport Reaction Systems , 2013, SIAM J. Control. Optim..

[5]  James C. Robinson Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .

[6]  Swann Marx,et al.  Output feedback stabilization of the Korteweg-de Vries equation , 2016, Autom..

[7]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[8]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[9]  Emilia Fridman,et al.  Boundary control of delayed ODE-heat cascade under actuator saturation , 2017, Autom..

[10]  Edriss S. Titi,et al.  Feedback Control of Nonlinear Dissipative Systems by Finite Determining Parameters - A Reaction-diffusion Paradigm , 2013, 1301.6992.

[11]  Tingxiu Wang,et al.  Stability in Abstract Functional Differential Equations. Part I. General Theorems , 1994 .

[12]  Huai-Ning Wu,et al.  Lyapunov-based design of locally collocated controllers for semi-linear parabolic PDE systems , 2014, J. Frankl. Inst..

[13]  Emilia Fridman,et al.  Exponential stability of linear distributed parameter systems with time-varying delays , 2009, Autom..

[14]  M. Krstić,et al.  Global Boundary Stabilization of the Korteweg-de Vries-Burgers Equation , 1998 .

[15]  C. SIAMJ.,et al.  SAMPLED-DATA DISTRIBUTED H∞ CONTROL OF TRANSPORT REACTION SYSTEMS∗ , 2013 .

[16]  Miroslav Krstic,et al.  Boundary control of the Korteweg-de Vries-Burgers equation: further results on stabilization and well-posedness, with numerical demonstration , 2000, IEEE Trans. Autom. Control..

[17]  Miroslav Krstic,et al.  Stabilization of reaction-diffusion equations with state delay using boundary control input , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[18]  Hilmi Demiray,et al.  A travelling wave solution to the KdV-Burgers equation , 2004, Appl. Math. Comput..

[19]  Emilia Fridman,et al.  Robust sampled-data control of a class of semilinear parabolic systems , 2012, Autom..

[20]  Agus Hasan Output-feedback stabilization of the Korteweg-de Vries equation , 2016, 2016 24th Mediterranean Conference on Control and Automation (MED).

[21]  Emilia Fridman,et al.  New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems , 2001, Syst. Control. Lett..

[22]  B. Feng,et al.  Stationary travelling-wave solutions of an unstable KdV-Burgers equation , 2000 .

[23]  Kun Liu,et al.  Delay-dependent methods and the first delay interval , 2014, Syst. Control. Lett..

[24]  Frédéric Gouaisbaut,et al.  Wirtinger-based integral inequality: Application to time-delay systems , 2013, Autom..

[25]  E. Titi,et al.  Global stabilization of the Navier-Stokes-Voight and the damped nonlinear wave equations by finite number of feedback controllers , 2017, 1706.00162.

[26]  Jean-Michel Coron,et al.  Rapid Stabilization for a Korteweg-de Vries Equation From the Left Dirichlet Boundary Condition , 2013, IEEE Transactions on Automatic Control.

[27]  N. Larkin Korteweg-de Vries and Kuramoto-Sivashinsky equations in bounded domains , 2004 .

[28]  Emilia Fridman,et al.  Introduction to Time-Delay Systems: Analysis and Control , 2014 .

[29]  Emilia Fridman,et al.  Sampled-data relay control of diffusion PDEs , 2017, Autom..