Dynamic programming algorithms for the bi-objective integer knapsack problem

This paper presents two new dynamic programming (DP) algorithms to find the exact Pareto frontier for the bi-objective integer knapsack problem. First, a property of the traditional DP algorithm for the multi-objective integer knapsack problem is identified. The first algorithm is developed by directly using the property. The second algorithm is a hybrid DP approach using the concept of the bound sets. The property is used in conjunction with the bound sets. Next, the numerical experiments showed that a promising partial solution can be sometimes discarded if the solutions of the linear relaxation for the subproblem associated with the partial solution are directly used to estimate an upper bound set. It means that the upper bound set is underestimated. Then, an extended upper bound set is proposed on the basis of the set of linear relaxation solutions. The efficiency of the hybrid algorithm is improved by tightening the proposed upper bound set. The numerical results obtained from different types of bi-objective instances show the effectiveness of the proposed approach.

[1]  George Mavrotas,et al.  Multi-criteria branch and bound: A vector maximization algorithm for Mixed 0-1 Multiple Objective Linear Programming , 2005, Appl. Math. Comput..

[2]  Maria João Alves,et al.  MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem , 2007, Comput. Oper. Res..

[3]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[4]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[5]  José Rui Figueira,et al.  Integrating partial optimization with scatter search for solving bi-criteria {0, 1}-knapsack problems , 2007, Eur. J. Oper. Res..

[6]  Cai Wen Zhang,et al.  Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic , 2004, Eur. J. Oper. Res..

[7]  Melih Özlen,et al.  Multi-objective integer programming: A general approach for generating all non-dominated solutions , 2009, Eur. J. Oper. Res..

[8]  Serpil Sayin,et al.  Using support vector machines to learn the efficient set in multiple objective discrete optimization , 2009, Eur. J. Oper. Res..

[9]  Yong Shi,et al.  Capital budgeting with multiple criteria and multiple decision makers , 1996 .

[10]  Mehrdad Tamiz,et al.  Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..

[11]  Daniel Vanderpooten,et al.  Solving efficiently the 0-1 multi-objective knapsack problem , 2009, Comput. Oper. Res..

[12]  M. Dyer,et al.  A hybrid dynamic programming/branch-and-bound algorithm for the multiple-choice knapsack problem , 1995 .

[13]  José Rui Figueira,et al.  Solving the bi-objective multi-dimensional knapsack problem exploiting the concept of core , 2009, Appl. Math. Comput..

[14]  Michael M. Kostreva,et al.  Relocation problems arising in conservation biology , 1999 .

[15]  R. Bellman Dynamic programming. , 1957, Science.

[16]  Olivier Spanjaard,et al.  Using Bound Sets in Multiobjective Optimization: Application to the Biobjective Binary Knapsack Problem , 2010, SEA.

[17]  Alejandro Crema,et al.  A method for finding the set of non-dominated vectors for multiple objective integer linear programs , 2004, Eur. J. Oper. Res..

[18]  Luís Paquete,et al.  On Beam Search for Multicriteria Combinatorial Optimization Problems , 2012, CPAIOR.

[19]  M. Wiecek,et al.  Time-Dependent Capital Budgeting with Multiple Criteria , 2000 .

[20]  Paolo Serafini,et al.  Some Considerations about Computational Complexity for Multi Objective Combinatorial Problems , 1987 .

[21]  Bernardo Villarreal,et al.  Multicriteria integer programming: A (hybrid) dynamic programming recursive approach , 1981, Math. Program..

[22]  José Rui Figueira,et al.  Core problems in bi-criteria {0, 1}-knapsack problems , 2008, Comput. Oper. Res..

[23]  Yacov Y. Haimes,et al.  Research and Practice in Multiple Criteria Decision Making , 2000 .

[24]  Matthias Ehrgott,et al.  Bound sets for biobjective combinatorial optimization problems , 2007, Comput. Oper. Res..

[25]  José Rui Figueira,et al.  Labeling algorithms for multiple objective integer knapsack problems , 2010, Comput. Oper. Res..

[26]  José Rui Figueira,et al.  A reduction dynamic programming algorithm for the bi-objective integer knapsack problem , 2013, Eur. J. Oper. Res..

[27]  Daniel Vanderpooten,et al.  Implementing an efficient fptas for the 0-1 multi-objective knapsack problem , 2009, Eur. J. Oper. Res..

[28]  Thomas L. Morin,et al.  A hybrid approach to discrete mathematical programming , 2015, Math. Program..

[29]  Kathrin Klamroth,et al.  Dynamic programming based algorithms for the discounted {0-1} knapsack problem , 2012, Appl. Math. Comput..

[30]  Peter Neumayer,et al.  A reduction algorithm for integer multiple objective linear programs , 1997 .

[31]  Luís Paquete,et al.  Algorithmic improvements on dynamic programming for the bi-objective {0,1} knapsack problem , 2013, Comput. Optim. Appl..

[32]  Marco Laumanns,et al.  An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method , 2006, Eur. J. Oper. Res..

[33]  Weihua Zhang,et al.  A simple augmented ∊-constraint method for multi-objective mathematical integer programming problems , 2014, Eur. J. Oper. Res..

[34]  José Rui Figueira,et al.  A Scatter Search Method for the Bi-Criteria Multi-dimensional {0,1}-Knapsack Problem using Surrogate Relaxation , 2004, J. Math. Model. Algorithms.

[35]  Alejandro Crema,et al.  A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs , 2007, Eur. J. Oper. Res..

[36]  José Rui Figueira,et al.  Using the idea of expanded core for the exact solution of bi-objective multi-dimensional knapsack problems , 2011, J. Glob. Optim..

[37]  M. Köksalan,et al.  Approximating the nondominated frontiers of multi‐objective combinatorial optimization problems , 2009 .

[38]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[39]  Francis Sourd,et al.  A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem , 2008, INFORMS J. Comput..

[40]  Larry Jenkins A bicriteria knapsack program for planning remediation of contaminated lightstation sites , 2002, Eur. J. Oper. Res..

[41]  F. Abdelaziz,et al.  A Hybrid Heuristic for Multiobjective Knapsack Problems , 1999 .

[42]  Luís Paquete,et al.  Greedy algorithms for a class of knapsack problems with binary weights , 2012, Comput. Oper. Res..

[43]  George Mavrotas,et al.  Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms , 2010, Eur. J. Oper. Res..

[44]  Kari Alanne,et al.  Selection of renovation actions using multi-criteria “knapsack” model , 2004 .

[45]  Anthony Przybylski,et al.  A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives , 2010, Discret. Optim..

[46]  José Rui Figueira,et al.  Solving bicriteria 0-1 knapsack problems using a labeling algorithm , 2003, Comput. Oper. Res..

[47]  José Rui Figueira,et al.  A scatter search method for bi-criteria {0, 1}-knapsack problems , 2006, Eur. J. Oper. Res..

[48]  Andrzej Jaszkiewicz,et al.  On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study , 2004, Eur. J. Oper. Res..

[49]  E. L. Ulungu,et al.  Multi‐objective combinatorial optimization problems: A survey , 1994 .

[50]  Margarida Vaz Pato,et al.  A two state reduction based dynamic programming algorithm for the bi-objective 0-1 knapsack problem , 2011, Comput. Math. Appl..

[51]  M. Wiecek,et al.  Dynamic programming approaches to the multiple criteria knapsack problem , 2000 .

[52]  Fariborz Jolai,et al.  Exact algorithm for bi-objective 0-1 knapsack problem , 2007, Appl. Math. Comput..

[53]  Arnaud Fréville,et al.  Tabu Search Based Procedure for Solving the 0-1 MultiObjective Knapsack Problem: The Two Objectives Case , 2000, J. Heuristics.

[54]  George Mavrotas,et al.  An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems , 2013, Appl. Math. Comput..

[55]  Meir J. Rosenblatt,et al.  Generating the Discrete Efficient Frontier to the Capital Budgeting Problem , 1989, Oper. Res..

[56]  Johannes Jahn,et al.  Recent Advances and Historical Development of Vector Optimization , 1987 .

[57]  Jacques Teghem,et al.  Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..

[58]  Esra Bas,et al.  An investment plan for preventing child injuries using risk priority number of failure mode and effects analysis methodology and a multi-objective, multi-dimensional mixed 0-1 knapsack model , 2011, Reliab. Eng. Syst. Saf..

[59]  Clarisse Dhaenens,et al.  K-PPM: A new exact method to solve multi-objective combinatorial optimization problems , 2010, Eur. J. Oper. Res..

[60]  Gwo-Hshiung Tzeng,et al.  A MULTIOBJECTIVE PROGRAMMING APPROACH FOR SELECTING NON-INDEPENDENT TRANSPORTATION INVESTMENT ALTERNATIVES , 1996 .