Dynamic programming algorithms for the bi-objective integer knapsack problem
暂无分享,去创建一个
[1] George Mavrotas,et al. Multi-criteria branch and bound: A vector maximization algorithm for Mixed 0-1 Multiple Objective Linear Programming , 2005, Appl. Math. Comput..
[2] Maria João Alves,et al. MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem , 2007, Comput. Oper. Res..
[3] Matthias Ehrgott,et al. Multicriteria Optimization , 2005 .
[4] Xavier Gandibleux,et al. A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..
[5] José Rui Figueira,et al. Integrating partial optimization with scatter search for solving bi-criteria {0, 1}-knapsack problems , 2007, Eur. J. Oper. Res..
[6] Cai Wen Zhang,et al. Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic , 2004, Eur. J. Oper. Res..
[7] Melih Özlen,et al. Multi-objective integer programming: A general approach for generating all non-dominated solutions , 2009, Eur. J. Oper. Res..
[8] Serpil Sayin,et al. Using support vector machines to learn the efficient set in multiple objective discrete optimization , 2009, Eur. J. Oper. Res..
[9] Yong Shi,et al. Capital budgeting with multiple criteria and multiple decision makers , 1996 .
[10] Mehrdad Tamiz,et al. Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..
[11] Daniel Vanderpooten,et al. Solving efficiently the 0-1 multi-objective knapsack problem , 2009, Comput. Oper. Res..
[12] M. Dyer,et al. A hybrid dynamic programming/branch-and-bound algorithm for the multiple-choice knapsack problem , 1995 .
[13] José Rui Figueira,et al. Solving the bi-objective multi-dimensional knapsack problem exploiting the concept of core , 2009, Appl. Math. Comput..
[14] Michael M. Kostreva,et al. Relocation problems arising in conservation biology , 1999 .
[15] R. Bellman. Dynamic programming. , 1957, Science.
[16] Olivier Spanjaard,et al. Using Bound Sets in Multiobjective Optimization: Application to the Biobjective Binary Knapsack Problem , 2010, SEA.
[17] Alejandro Crema,et al. A method for finding the set of non-dominated vectors for multiple objective integer linear programs , 2004, Eur. J. Oper. Res..
[18] Luís Paquete,et al. On Beam Search for Multicriteria Combinatorial Optimization Problems , 2012, CPAIOR.
[19] M. Wiecek,et al. Time-Dependent Capital Budgeting with Multiple Criteria , 2000 .
[20] Paolo Serafini,et al. Some Considerations about Computational Complexity for Multi Objective Combinatorial Problems , 1987 .
[21] Bernardo Villarreal,et al. Multicriteria integer programming: A (hybrid) dynamic programming recursive approach , 1981, Math. Program..
[22] José Rui Figueira,et al. Core problems in bi-criteria {0, 1}-knapsack problems , 2008, Comput. Oper. Res..
[23] Yacov Y. Haimes,et al. Research and Practice in Multiple Criteria Decision Making , 2000 .
[24] Matthias Ehrgott,et al. Bound sets for biobjective combinatorial optimization problems , 2007, Comput. Oper. Res..
[25] José Rui Figueira,et al. Labeling algorithms for multiple objective integer knapsack problems , 2010, Comput. Oper. Res..
[26] José Rui Figueira,et al. A reduction dynamic programming algorithm for the bi-objective integer knapsack problem , 2013, Eur. J. Oper. Res..
[27] Daniel Vanderpooten,et al. Implementing an efficient fptas for the 0-1 multi-objective knapsack problem , 2009, Eur. J. Oper. Res..
[28] Thomas L. Morin,et al. A hybrid approach to discrete mathematical programming , 2015, Math. Program..
[29] Kathrin Klamroth,et al. Dynamic programming based algorithms for the discounted {0-1} knapsack problem , 2012, Appl. Math. Comput..
[30] Peter Neumayer,et al. A reduction algorithm for integer multiple objective linear programs , 1997 .
[31] Luís Paquete,et al. Algorithmic improvements on dynamic programming for the bi-objective {0,1} knapsack problem , 2013, Comput. Optim. Appl..
[32] Marco Laumanns,et al. An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method , 2006, Eur. J. Oper. Res..
[33] Weihua Zhang,et al. A simple augmented ∊-constraint method for multi-objective mathematical integer programming problems , 2014, Eur. J. Oper. Res..
[34] José Rui Figueira,et al. A Scatter Search Method for the Bi-Criteria Multi-dimensional {0,1}-Knapsack Problem using Surrogate Relaxation , 2004, J. Math. Model. Algorithms.
[35] Alejandro Crema,et al. A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs , 2007, Eur. J. Oper. Res..
[36] José Rui Figueira,et al. Using the idea of expanded core for the exact solution of bi-objective multi-dimensional knapsack problems , 2011, J. Glob. Optim..
[37] M. Köksalan,et al. Approximating the nondominated frontiers of multi‐objective combinatorial optimization problems , 2009 .
[38] A. M. Geoffrion. Proper efficiency and the theory of vector maximization , 1968 .
[39] Francis Sourd,et al. A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem , 2008, INFORMS J. Comput..
[40] Larry Jenkins. A bicriteria knapsack program for planning remediation of contaminated lightstation sites , 2002, Eur. J. Oper. Res..
[41] F. Abdelaziz,et al. A Hybrid Heuristic for Multiobjective Knapsack Problems , 1999 .
[42] Luís Paquete,et al. Greedy algorithms for a class of knapsack problems with binary weights , 2012, Comput. Oper. Res..
[43] George Mavrotas,et al. Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms , 2010, Eur. J. Oper. Res..
[44] Kari Alanne,et al. Selection of renovation actions using multi-criteria “knapsack” model , 2004 .
[45] Anthony Przybylski,et al. A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives , 2010, Discret. Optim..
[46] José Rui Figueira,et al. Solving bicriteria 0-1 knapsack problems using a labeling algorithm , 2003, Comput. Oper. Res..
[47] José Rui Figueira,et al. A scatter search method for bi-criteria {0, 1}-knapsack problems , 2006, Eur. J. Oper. Res..
[48] Andrzej Jaszkiewicz,et al. On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study , 2004, Eur. J. Oper. Res..
[49] E. L. Ulungu,et al. Multi‐objective combinatorial optimization problems: A survey , 1994 .
[50] Margarida Vaz Pato,et al. A two state reduction based dynamic programming algorithm for the bi-objective 0-1 knapsack problem , 2011, Comput. Math. Appl..
[51] M. Wiecek,et al. Dynamic programming approaches to the multiple criteria knapsack problem , 2000 .
[52] Fariborz Jolai,et al. Exact algorithm for bi-objective 0-1 knapsack problem , 2007, Appl. Math. Comput..
[53] Arnaud Fréville,et al. Tabu Search Based Procedure for Solving the 0-1 MultiObjective Knapsack Problem: The Two Objectives Case , 2000, J. Heuristics.
[54] George Mavrotas,et al. An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems , 2013, Appl. Math. Comput..
[55] Meir J. Rosenblatt,et al. Generating the Discrete Efficient Frontier to the Capital Budgeting Problem , 1989, Oper. Res..
[56] Johannes Jahn,et al. Recent Advances and Historical Development of Vector Optimization , 1987 .
[57] Jacques Teghem,et al. Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..
[58] Esra Bas,et al. An investment plan for preventing child injuries using risk priority number of failure mode and effects analysis methodology and a multi-objective, multi-dimensional mixed 0-1 knapsack model , 2011, Reliab. Eng. Syst. Saf..
[59] Clarisse Dhaenens,et al. K-PPM: A new exact method to solve multi-objective combinatorial optimization problems , 2010, Eur. J. Oper. Res..
[60] Gwo-Hshiung Tzeng,et al. A MULTIOBJECTIVE PROGRAMMING APPROACH FOR SELECTING NON-INDEPENDENT TRANSPORTATION INVESTMENT ALTERNATIVES , 1996 .