Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence

Space-time correlation measurements in the roughly isotropic turbulence behind a regular grid spanning a uniform airstream give the simplest Eulerian time correlation if we choose for the upstream probe signal a time delay which just ‘cancels’ the mean flow displacement. The correlation coefficient of turbulent velocities passed through matched narrow-band niters shows a strong dependence on nominal filter frequency (∼ wave-number at these small turbulence levels). With plausible scaling of the time separations, a scaling dependent on both wave-number and time, it is possible to effect a good collapse of the correlation functions corresponding to wave-numbers from 0·5 cm −1 , the location of the peak in the three-dimensional spectrum, to 10 cm −1 , about half the Kolmogorov wave-number. The spectrally local time-scaling factor is a ‘parallel’ combination of the times characterizing (i) gross strain distortion by larger eddies, (ii) wrinkling distortion by smaller eddies, (iii) convection by larger eddies and (iv) gross rotation by larger eddies.

[1]  Geoffrey Ingram Taylor,et al.  Diffusion by Continuous Movements , 1922 .

[2]  N. Wiener Generalized harmonic analysis , 1930 .

[3]  L. F. G. Simmons,et al.  Experimental Investigation and Analysis of the Velocity Variations in Turbulent Flow , 1934 .

[4]  Geoffrey Ingram Taylor,et al.  Statistical theory of turbulenc , 1935, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences.

[5]  T. Kármán,et al.  On the statistical theory of turbulence , 1937 .

[6]  H. L. Dryden,et al.  Measurements of Intensity and Scale of Wind-Tunnel Turbulence and Their Relation to the Critical Reynolds Number of Spheres , 1937 .

[7]  T. Kármán,et al.  On the Statistical Theory of Isotropic Turbulence , 1938 .

[8]  G. Taylor The Spectrum of Turbulence , 1938 .

[9]  L. F. G. Simmons,et al.  An experimental determination of the spectrum of turbulence - With an appendix: method of deducing F(n) from the measurements. , 1938, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  D. C. Macphail An Experimental Verification of the Isotropy of Turbulence Produced by a Grid , 1940 .

[11]  S. Rice Mathematical analysis of random noise , 1944 .

[12]  Iden Kerney,et al.  The discernibility of changes in program band width , 1944 .

[13]  L. G. Loitsianskii Some Basic Laws of Isotropic Turbulent Flow , 1945 .

[14]  A. Townsend,et al.  The measurement of double and triple correlation derivatives in isotropic turbulence , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  L. Kovasznay Spectrum of Locally Isotropic Turbulence , 1948 .

[16]  C. Weizsäcker Das Spektrum der Turbulenz bei großen Reynoldsschen Zahlen , 1948 .

[17]  A. Townsend,et al.  Decay of turbulence in the final period , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  W. Heisenberg,et al.  Zur statistischen Theorie der Turbulenz , 1948 .

[19]  G. Batchelor,et al.  ANISOTROPY OF THE SPECTRUM OF TURBULENCE AT SMALL WAVE-NUMBERS , 1950 .

[20]  E. Inoue On the Turbulent Diffusion in the Atmosphere (II) , 1950 .

[21]  J. Burgers On Turbulent Fluid Motion , 1951 .

[22]  A. Townsend,et al.  Similarity and self-preservation in isotropic turbulence , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[23]  H. Liepmann Aspects of the turbulence problem , 1952 .

[24]  S. Corrsin,et al.  Diffusion of heat from a line source in isotropic turbulence , 1952 .

[25]  C. Lin,et al.  On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes equation , 1953 .

[26]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[27]  A. Townsend The diffusion behind a line source in homogeneous turbulence , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[28]  J. Bass Space and time correlations in a turbulent fluid , 1954 .

[29]  W. Meecham Relation between Time Symmetry and Reflection Symmetry of Turbulent Fluids , 1958 .

[30]  S. Corrsin Outline of some topics in homogeneous turbulent flow , 1959 .

[31]  I. Howells An approximate equation for the spectrum of a conserved scalar quantity in a turbulent fluid , 1960, Journal of Fluid Mechanics.

[32]  L. Baldwin,et al.  Turbulent diffusion in the core of fully developed pipe flow , 1961 .

[33]  H. Wyld,et al.  Formulation of the theory of turbulence in an incompressible fluid , 1961 .

[34]  R. G. Deissler Analysis of Multipoint-Multitime Correlations and Diffusion in Decaying Homogeneous Turbulence , 1961 .

[35]  E. O'brien,et al.  A consequence of the zero fourth cumulant approximation , 1962, Journal of Fluid Mechanics.

[36]  L. Baldwin,et al.  TURBULENT DIFFUSION AND ANEMOMETER MEASUREMENTS , 1962 .

[37]  L. Baldwin,et al.  Turbulent Diffusion and Anemometer Measurement , 1962 .

[38]  S. Corrsin,et al.  Estimates of the Relations between Eulerian and Lagrangian Scales in Large Reynolds Number Turbulence , 1963 .

[39]  S. Corrsin,et al.  Turbulence: Experimental Methods , 1963 .

[40]  Y. Ogura A consequence of the zero-fourth-cumulant approximation in the decay of isotropic turbulence , 1963, Journal of Fluid Mechanics.

[41]  Robert H. Kraichnan,et al.  Kolmogorov's Hypotheses and Eulerian Turbulence Theory , 1964 .

[42]  R. Kraichnan Decay of Isotropic Turbulence in the Direct‐Interaction Approximation , 1964 .

[43]  S. Corrsin,et al.  The isotropic turbulent mixer: Part II. Arbitrary Schmidt number , 1964 .

[44]  Michael Fisher,et al.  Correlation measurements in a non-frozen pattern of turbulence , 1964, Journal of Fluid Mechanics.

[45]  Gunnar Heskestad,et al.  A Generalized Taylor Hypothesis With Application for High Reynolds Number Turbulent Shear Flows , 1965 .

[46]  A. Favre,et al.  Review on Space-Time Correlations in Turbulent Fluids , 1965 .

[47]  John L. Lumley,et al.  Interpretation of Time Spectra Measured in High‐Intensity Shear Flows , 1965 .

[48]  S. Corrsin,et al.  The use of a contraction to improve the isotropy of grid-generated turbulence , 1966, Journal of Fluid Mechanics.

[49]  Robert H. Kraichnan,et al.  Isotropic Turbulence and Inertial-Range Structure , 1966 .

[50]  P. Saffman Note on Decay of Homogeneous Turbulence , 1967 .

[51]  P. Saffman New Results on the Statistical Properties of the Large Eddies in Homogeneous Turbulence , 1967 .

[52]  W. T. Chu,et al.  Properties of the turbulence in the transition region of a round jet , 1969 .