Well-posedness and Long-time Behavior for a Nonstandard Viscous Cahn-Hilliard System

We study a diffusion model of phase field type, consisting of a system of two partial differential equations encoding the balances of microforces and microenergy; the two unknowns are the order parameter and the chemical potential. By a careful development of uniform estimates and the deduction of certain useful boundedness properties, we prove existence and uniqueness of a global-in-time smooth solution to the associated initial/boundary-value problem; moreover, we give a description of the relative $\omega$-limit set.

[1]  E. Rocca,et al.  Well-posedness and long-time behaviour for a singular phase field system of conserved type , 2007 .

[2]  Viorel Barbu,et al.  Differential equations in Banach spaces , 1976 .

[3]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[4]  Morton E. Gurtin,et al.  Continuum theory of thermally induced phase transitions based on an order parameter , 1993 .

[5]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[6]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[7]  A. Haraux,et al.  Systèmes dynamiques dissipatifs et applications , 1991 .

[8]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[9]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[10]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[11]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[12]  P. Podio-Guidugli Models of phase segregation and diffusion of atomic species on a lattice  , 2006 .

[13]  EXISTENCE AND UNIQUENESS OF A GLOBAL-IN-TIME SOLUTION TO A PHASE SEGREGATION PROBLEM OF THE ALLEN–CAHN TYPE , 2010 .

[14]  M. Frémond,et al.  Non-Smooth Thermomechanics , 2001 .

[15]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[16]  Giulio Schimperna,et al.  Global solutions to a generalized Cahn-Hilliard equation with viscosity , 2003, Advances in Differential Equations.

[17]  Local and asymptotic analysis of the flow generated by the Cahn–Hilliard–Gurtin equations , 2006 .

[18]  Riccarda Rossi,et al.  On two classes of generalized viscous Cahn-Hilliard equations , 2005 .