Rich Landscape of Colloidal Semiconductor–Metal Hybrid Nanostructures: Synthesis, Synergetic Characteristics, and Emerging Applications

Nanochemistry provides powerful synthetic tools allowing one to combine different materials on a single nanostructure, thus unfolding numerous possibilities to tailor their properties toward diverse functionalities. Herein, we review the progress in the field of semiconductor–metal hybrid nanoparticles (HNPs) focusing on metal–chalcogenides–metal combined systems. The fundamental principles of their synthesis are discussed, leading to a myriad of possible hybrid architectures including Janus zero-dimensional quantum dot-based systems and anisotropic quasi 1D nanorods and quasi-2D platelets. The properties of HNPs are described with particular focus on emergent synergetic characteristics. Of these, the light-induced charge-separation effect across the semiconductor–metal nanojunction is of particular interest as a basis for the utilization of HNPs in photocatalytic applications. The extensive studies on the charge-separation behavior and its dependence on the HNPs structural characteristics, environmental and chemical conditions, and light excitation regime are surveyed. Combining the advanced synthetic control with the charge-separation effect has led to demonstration of various applications of HNPs in different fields. A particular promise lies in their functionality as photocatalysts for a variety of uses, including solar-to-fuel conversion, as a new type of photoinitiator for photopolymerization and 3D printing, and in novel chemical and biomedical uses.

[1]  R. E. Schaak,et al.  Influence of Band Alignment on Electronic Relaxation in Plasmonic Metal–Semiconductor Hybrid Nanoparticles , 2022, The Journal of Physical Chemistry C.

[2]  T. Pellegrino,et al.  Fe3 O4 @Au@Cu2- x S Heterostructures Designed for Tri-Modal Therapy: Photo- Magnetic Hyperthermia and 64 Cu Radio-Insertion. , 2022, Small.

[3]  J. Cole,et al.  Controlling Photoluminescence for Optoelectronic Applications via Precision Fabrication of Quantum Dot/Au Nanoparticle Hybrid Assemblies , 2022, ACS Applied Nano Materials.

[4]  N. Bigall,et al.  Interparticle Interaction Matters: Charge Carrier Dynamics in Hybrid Semiconductor–Metal Cryoaerogels , 2022, Advanced Materials Interfaces.

[5]  Kan Zhang,et al.  Au/MoS2 Tips as Auxiliary Rate Aligners for the Photocatalytic Generation of Syngas with a Tunable Composition , 2022, Applied Catalysis B: Environmental.

[6]  Wenxing Yang,et al.  Pt Particle Size Affects Both the Charge Separation and Water Reduction Efficiencies of CdS-Pt Nanorod Photocatalysts for Light Driven H2 Generation. , 2022, Journal of the American Chemical Society.

[7]  K. Boldt,et al.  Chemoselective Surface Trap-Mediated Metal Growth on Semiconductor Nanocrystals , 2022, Chemistry of Materials.

[8]  U. Banin,et al.  Flow synthesis of photocatalytic semiconductor-metal hybrid nanocrystals. , 2022, Nanoscale.

[9]  U. Banin,et al.  Sulfide Ligands in Hybrid Semiconductor-Metal Nanocrystal Photocatalysts: Improved Hole Extraction and Altered Catalysis. , 2021, ACS applied materials & interfaces.

[10]  Ruoping Li,et al.  Synthesis and adsorption properties of CdS-Au hybrid nanorings , 2021 .

[11]  N. Pradhan,et al.  Au-Cu2-xTe Plasmonic Heteronanostructure Photoelectrocatalysts. , 2021, The journal of physical chemistry letters.

[12]  U. Banin,et al.  Luminescent Anisotropic Wurtzite InP Nanocrystals. , 2021, Nano letters.

[13]  D. Cullen,et al.  Slow Auger Recombination of Trapped Excitons Enables Efficient Multiple Electron Transfer in CdS-Pt Nanorod Heterostructures. , 2021, Journal of the American Chemical Society.

[14]  N. Bigall,et al.  Revealing the Effect of Nanoscopic Design on the Charge Carrier Separation Processes in Semiconductor‐Metal Nanoparticle Gel Networks , 2021, Advanced Optical Materials.

[15]  S. Stupp,et al.  Quantum Dot-Sensitized Photoreduction of CO2 in Water with Turnover Number > 80,000. , 2021, Journal of the American Chemical Society.

[16]  J. Choi,et al.  Optimal Length of Hybrid Metal–Semiconductor Nanorods for Photocatalytic Hydrogen Generation , 2021, ACS Catalysis.

[17]  Hsieh-Chih Tsai,et al.  Core-Multishell Au@Cu2–xS@Au Nanoparticles for Surface-Enhanced Raman Scattering-Guided Low-Intensity Photothermal Cancer Therapy , 2021, ACS Applied Nano Materials.

[18]  Younan Xia,et al.  Bimetallic Janus Nanocrystals: Syntheses and Applications , 2021, Advanced materials.

[19]  W. Tan,et al.  Plasmonic AuPt@CuS Heterostructure with Enhanced Synergistic Efficacy for Radiophotothermal Therapy. , 2021, Journal of the American Chemical Society.

[20]  Hailong Chen,et al.  Shell Thickness Dependence of the Plasmon-Induced Hot-Electron Injection Process in Au@CdS Core–Shell Nanocrystals , 2021, The Journal of Physical Chemistry C.

[21]  Yuanshen Qi,et al.  Silver Tipping of CdSe@CdS Nanorods: How To Avoid Cation Exchange , 2021, Chemistry of Materials.

[22]  Yifan Zhu,et al.  Light-Mediated Polymerization Induced by Semiconducting Nanomaterials: State-of-the-Art and Future Perspectives , 2021, ACS polymers Au.

[23]  H. Jeong,et al.  Tailored growth of single-crystalline InP tetrapods , 2021, Nature Communications.

[24]  S. Stupp,et al.  Quantum Dot-Sensitized Photoreduction of CO2 in Water with Turnover Number > 80,000. , 2021, Journal of the American Chemical Society.

[25]  A. Feldhoff,et al.  Spatial Extent of Fluorescence Quenching in Mixed Semiconductor–Metal Nanoparticle Gel Networks , 2021, Advanced Functional Materials.

[26]  A. Feldhoff,et al.  One‐Step Formation of Hybrid Nanocrystal Gels: Deposition of Metal Domains on CdSe/CdS Nanorod and Nanoplatelet Networks , 2021, Advanced Optical Materials.

[27]  R. Hübner,et al.  Enhanced Photoluminescence of Gold Nanoparticle‐Quantum Dot Hybrids Confined in Hairy Polymer Nanofibers , 2021 .

[28]  S. Rayalu,et al.  Synthesis of Ni2P/CdS and Pt/TiO2 nanocomposite for photoreduction of CO2 into methanol , 2021, Scientific Reports.

[29]  U. Banin,et al.  Visualizing Ultrafast Electron Transfer Processes in Semiconductor–Metal Hybrid Nanoparticles: Toward Excitonic–Plasmonic Light Harvesting , 2021, Nano letters.

[30]  U. Banin,et al.  Quantum Photoinitiators: Toward Emerging Photocuring Applications. , 2020, Journal of the American Chemical Society.

[31]  Liang Huang,et al.  Hierarchical Plasmonic-Fluorescent Labels for Highly Sensitive Lateral Flow Immunoassay with Flexible Dual-Modal Switching. , 2020, ACS applied materials & interfaces.

[32]  Mukesh Kumar,et al.  Modified Absorption and Emission Properties Leading to Intriguing Applications in Plasmonic–Excitonic Nanostructures , 2020, Advanced Optical Materials.

[33]  Mathias Micheel,et al.  Influence of Surface Ligands on Charge-Carrier Trapping and Relaxation in Water-Soluble CdSe@CdS Nanorods , 2020, Catalysts.

[34]  M. El-Naggar,et al.  Recent advances in polymer/metal/metal oxide hybrid nanostructures for catalytic applications: a review , 2020 .

[35]  W. Zhou,et al.  Bi2S3 coated Au nanorods for enhanced photodynamic and photothermal antibacterial activities under NIR light , 2020 .

[36]  Ruoping Li,et al.  A novel strategy for the design of Au@CdS yolk-shell nanostructures and their photocatalytic properties , 2020 .

[37]  Jing Chen,et al.  Anchoring Single‐Atom Ru on CdS with Enhanced CO 2 Capture and Charge Accumulation for High Selectivity of Photothermocatalytic CO 2 Reduction to Solar Fuels , 2020 .

[38]  Zhuofeng Hu,et al.  Pt Nanoparticle-Decorated CdS Photocalysts for CO2 Reduction and H2 Evolution , 2020 .

[39]  A. Patra,et al.  Electronic Structure Modulation of 2D Colloidal CdSe Nanoplatelets by Au25 Clusters for High-Performance Photodetectors , 2020 .

[40]  Xiaohang Li,et al.  Ripening of Gold Clusters into a Single Domain on Semiconductor Quantum Rods during Langmuir–Blodgett Deposition , 2020 .

[41]  T. Ding,et al.  Coulomb Barrier for Sequential Two-Electron Transfer in a Nano-Engineered Photocatalyst. , 2020, Journal of the American Chemical Society.

[42]  D. Cullen,et al.  Efficient Hot Electron Transfer from Small Au Nanoparticles. , 2020, Nano letters.

[43]  Ququan Wang,et al.  A controlled growth of triangular AuCu alloy nanostars and high photocatalytic activities of AuCu@CdS heterostars , 2020 .

[44]  Jie Zhu,et al.  Noble metal-free bimetallic NiCo decorated Zn0.5Cd0.5S solid solution for enhanced photocatalytic H2 evolution under visible light , 2020 .

[45]  Michael Volokh Metal/semiconductor interfaces in nanoscale objects: synthesis, emerging properties and applications of hybrid nanostructures , 2020, Nanoscale advances.

[46]  Rongming Wang,et al.  Structure design, controllable synthesis, and application of metal-semiconductor heterostructure nanoparticles , 2020 .

[47]  Jiatao Zhang,et al.  Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. , 2020, Chemical reviews.

[48]  T. Mokari,et al.  Selective Growth of Metal Sulfide, Metal, and Metal-Alloy on 2D CdS Nanoplates , 2020, Frontiers in Materials.

[49]  Ququan Wang,et al.  Synthesis of Au/CdSe Janus Nanoparticles with Efficient Charge Transfer for Improving Photocatalytic Hydrogen Generation , 2019, Nanoscale Research Letters.

[50]  Z. Yin,et al.  Nonepitaxial Gold-Tipped ZnSe Hybrid Nanorods for Efficient Photocatalytic Hydrogen Production. , 2019, Small.

[51]  Wenxiang Zhang,et al.  Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor , 2019, Nature Communications.

[52]  Jiatao Zhang,et al.  Electronic doping-enabled transition from n- to p-type conductivity over Au@CdS core–shell nanocrystals toward unassisted photoelectrochemical water splitting , 2019, Journal of Materials Chemistry A.

[53]  L. Houben,et al.  Seeded Rods with Ag and Pd Bimetallic Tips—Spontaneous Rearrangements of the Nanoalloys on the Atomic Scale , 2019, Chemistry of Materials.

[54]  U. Banin,et al.  A clear solution: semiconductor nanocrystals as photoinitiators in solvent free polymerization. , 2019, Nanoscale.

[55]  Marco A. S. Garcia,et al.  Deposition of metal particles onto semiconductor nanorods using an ionic liquid , 2019, Beilstein journal of nanotechnology.

[56]  M. Xu,et al.  Efficient Plasmonic Au/CdSe Nanodumbbell for Photoelectrochemical Hydrogen Generation beyond Visible Region , 2019, Advanced Energy Materials.

[57]  Y. Chueh,et al.  Enhanced Photocarrier Generation with Selectable Wavelengths by M-Decorated-CuInS2 Nanocrystals (M = Au and Pt) Synthesized in a Single Surfactant Process on MoS2 Bilayers. , 2019, Small.

[58]  Xu‐Bing Li,et al.  Susceptible Surface Sulfide Regulates Catalytic Activity of CdSe Quantum Dots for Hydrogen Photogeneration , 2018, Advanced materials.

[59]  Andrew K. Tobias,et al.  Metal-Enhanced Fluorescence from Quantum Dot-Coupled Gold Nanoparticles , 2019, The Journal of Physical Chemistry C.

[60]  Qi Shao,et al.  Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis , 2018, Advanced Functional Materials.

[61]  Junfa Zhu,et al.  Enabling Visible-Light-Driven Selective CO2 Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H2 Evolution , 2018, Angewandte Chemie.

[62]  Tongbu Lu,et al.  Selective Photocatalytic CO2 Reduction in Water by Electrostatic Assembly of CdS Nanocrystals with a Dinuclear Cobalt Catalyst , 2018, ACS Catalysis.

[63]  U. Banin,et al.  The Metal Type Governs Photocatalytic Reactive Oxygen Species Formation by Semiconductor‐Metal Hybrid Nanoparticles , 2018, ChemCatChem.

[64]  U. Banin,et al.  Photocatalytic Hybrid Semiconductor–Metal Nanoparticles; from Synergistic Properties to Emerging Applications , 2018, Advanced materials.

[65]  Peter D. Frischmann,et al.  All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods , 2018, Nature Energy.

[66]  Wei Li,et al.  Size-controlled electron transfer rates determine hydrogen generation efficiency in colloidal Pt-decorated CdS quantum dots. , 2018, Nanoscale.

[67]  J. Choi,et al.  Composition effect of alloy semiconductors on Pt-tipped Zn1−xCdxSe nanorods for enhanced photocatalytic hydrogen generation , 2018 .

[68]  C. Qu,et al.  Two-Dimensional Morphology Enhances Light-Driven H2 Generation Efficiency in CdS Nanoplatelet-Pt Heterostructures. , 2018, Journal of the American Chemical Society.

[69]  E. Rabani,et al.  Charge Carrier Dynamics in Photocatalytic Hybrid Semiconductor-Metal Nanorods: Crossover from Auger Recombination to Charge Transfer. , 2018, Nano letters (Print).

[70]  T. Lian,et al.  Exciton dissociation dynamics and light-driven H2 generation in colloidal 2D cadmium chalcogenide nanoplatelet heterostructures , 2018, Nano Research.

[71]  S. Acharya,et al.  Probing Local Electronic Structures of Au–PbS Metal–Semiconductor Nanodumbbells , 2018 .

[72]  Jacek K. Stolarczyk,et al.  Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures , 2018 .

[73]  Jit Satra,et al.  Single source precursor driven phase selective synthesis of Au-CuGaS2 heteronanostructures: an observation of plasmon enhanced photocurrent efficiency. , 2018, Dalton transactions.

[74]  Yan Cheng,et al.  Resonance Energy Transfer-Promoted Photothermal and Photodynamic Performance of Gold-Copper Sulfide Yolk-Shell Nanoparticles for Chemophototherapy of Cancer. , 2018, Nano letters.

[75]  Molly B. Wilker,et al.  Role of Surface-Capping Ligands in Photoexcited Electron Transfer between CdS Nanorods and [FeFe] Hydrogenase and the Subsequent H2 Generation , 2018 .

[76]  L. Amirav,et al.  Size Matters: Cocatalyst Size Effect on Charge Transfer and Photocatalytic Activity. , 2018, Nano letters.

[77]  C. Sönnichsen,et al.  Synthesis of Au-CdS@CdSe Hybrid Nanoparticles with a Highly Reactive Gold Domain. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[78]  E. Weiss,et al.  Photocatalytically Active Superstructures of Quantum Dots and Iron Porphyrins for Reduction of CO2 to CO in Water. , 2018, ACS nano.

[79]  Xianmei Xiang,et al.  Synthesis of PdS ‐ CdSe@CdS ‐ Au nanorods with asymmetric tips with improved H 2 production efficiency in water splitting and increased photostability , 2018 .

[80]  Xiujian Zhao,et al.  Generating plasmonic heterostructures by cation exchange and redox reactions of covellite CuS nanocrystals with Au3+ ions. , 2018, Nanoscale.

[81]  M. Willinger,et al.  Type I vs. quasi-type II modulation in CdSe@CdS tetrapods: ramifications for noble metal tipping , 2017 .

[82]  D. Zheng,et al.  A metal-semiconductor nanocomposite as an efficient oxygen-independent photosensitizer for photodynamic tumor therapy. , 2017, Nanoscale horizons.

[83]  Adam D. Dunkelberger,et al.  Quantification of Efficient Plasmonic Hot-Electron Injection in Gold Nanoparticle-TiO2 Films. , 2017, Nano letters.

[84]  J. Choi,et al.  Engineering Reaction Kinetics by Tailoring the Metal Tips of Metal-Semiconductor Nanodumbbells. , 2017, Nano letters.

[85]  Yong Wang,et al.  Monodisperse Dual Plasmonic Au@Cu2-xE (E= S, Se) Core@Shell Supraparticles: Aqueous Fabrication, Multimodal Imaging, and Tumor Therapy at in Vivo Level. , 2017, ACS nano.

[86]  H. Ghosh,et al.  Hot-electron transfer from the semiconductor domain to the metal domain in CdSe@CdS{Au} nano-heterostructures. , 2017, Nanoscale.

[87]  E. Weiss,et al.  Powering a CO2 Reduction Catalyst with Visible Light through Multiple Sub-picosecond Electron Transfers from a Quantum Dot. , 2017, Journal of the American Chemical Society.

[88]  S. Bergbreiter,et al.  Rapid Three-Dimensional Printing in Water Using Semiconductor-Metal Hybrid Nanoparticles as Photoinitiators. , 2017, Nano letters.

[89]  Moritz F. Kuehnel,et al.  Selective Photocatalytic CO2 Reduction in Water through Anchoring of a Molecular Ni Catalyst on CdS Nanocrystals. , 2017, Journal of the American Chemical Society.

[90]  Ququan Wang,et al.  Integrating metallic nanoparticles of Au and Pt with MoS2–CdS hybrids for high-efficient photocatalytic hydrogen generation via plasmon-induced electron and energy transfer , 2017 .

[91]  Weibang Lu,et al.  Morphology-Controlled Synthesis of Hybrid Nanocrystals via a Selenium-Mediated Strategy with Ligand Shielding Effect: The Case of Dual Plasmonic Au-Cu2-xSe. , 2017, ACS nano.

[92]  Bing Xie,et al.  The effect of Au nanocrystals applied in CdS colloidal quantum dots ultraviolet photodetectors , 2017, Journal of Materials Science: Materials in Electronics.

[93]  L. Houben,et al.  Inside-Out: The Role of Buried Interfaces in Hybrid Cu2ZnSnS4–Noble Metal Photocatalysts , 2017 .

[94]  Zhiqun Lin,et al.  Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation , 2017 .

[95]  R. Buonsanti,et al.  Colloidal nanocrystals for photoelectrochemical and photocatalytic water splitting , 2017 .

[96]  S. Pantelides,et al.  Design of a Hole Trapping Ligand. , 2017, Nano letters.

[97]  J. Vela,et al.  Using ATTO Dyes To Probe the Photocatalytic Activity of Au–CdS Nanoparticles , 2017 .

[98]  Xiujian Zhao,et al.  Electronic Supporting Information for Generating Plasmonic Heterostructures by Cation Exchange and Redox Reactions of Covellite CuS Nanocrystals with Au 3 + Ions , 2017 .

[99]  D. Bahnemann,et al.  Synthesis of Ternary and Quaternary Au and Pt Decorated CdSe/CdS Heteronanoplatelets with Controllable Morphology , 2017 .

[100]  Xiying Li,et al.  Effect of Pt–Pd hybrid nano-particle on CdS's activity for water splitting under visible light , 2016 .

[101]  P. Cozzoli,et al.  Colloidal Magnetic Heterostructured Nanocrystals with Asymmetric Topologies: Seeded-Growth Synthetic Routes and Formation Mechanisms , 2016, Front. Mater..

[102]  X. Liu,et al.  Ligand-triggered electrostatic self-assembly of CdS nanosheet/Au nanocrystal nanocomposites for versatile photocatalytic redox applications. , 2016, Nanoscale.

[103]  Jacek K. Stolarczyk,et al.  Electron Transfer Rate vs Recombination Losses in Photocatalytic H2 Generation on Pt-Decorated CdS Nanorods , 2016 .

[104]  Yugang Sun,et al.  Significant enhancement of photocatalytic water splitting enabled by elimination of surface traps in Pt-tipped CdSe nanorods. , 2016, Nanoscale.

[105]  J. Eaves,et al.  Observation of trapped-hole diffusion on the surfaces of CdS nanorods. , 2016, Nature chemistry.

[106]  L. Amirav,et al.  Charge-Transfer Dynamics in Nanorod Photocatalysts with Bimetallic Metal Tips , 2016 .

[107]  B. Satpati,et al.  Photoinduced ultrafast charge separation in colloidal 2-dimensional CdSe/CdS-Au hybrid nanoplatelets and corresponding application in photocatalysis. , 2016, Nanoscale.

[108]  Dongsheng Xu,et al.  Efficient Visible Light-Driven Splitting of Alcohols into Hydrogen and Corresponding Carbonyl Compounds over a Ni-Modified CdS Photocatalyst. , 2016, Journal of the American Chemical Society.

[109]  Uri Banin,et al.  Hybrid Semiconductor–Metal Nanorods as Photocatalysts , 2016, Topics in Current Chemistry.

[110]  Xindong Zhang,et al.  Synthesis and enhanced gas sensing properties of Au-nanoparticle decorated CdS nanowires , 2016 .

[111]  D. Oron,et al.  Charge Transfer Dynamics in CdS and CdSe@CdS Based Hybrid Nanorods Tipped with Both PbS and Pt , 2016 .

[112]  T. Lian,et al.  Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. , 2016, Chemical Society reviews.

[113]  Ziliang Ye,et al.  Metal-Semiconductor Nanoparticle Hybrids Formed by Self-Organization: A Platform to Address Exciton-Plasmon Coupling. , 2016, Nano letters.

[114]  L. Amirav,et al.  Selective Growth of Ni Tips on Nanorod Photocatalysts , 2016 .

[115]  N. Pradhan,et al.  Hybrid Dot–Disk Au-CuInS2 Nanostructures as Active Photocathode for Efficient Evolution of Hydrogen from Water , 2016 .

[116]  S. Linic,et al.  Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials. , 2016, ACS nano.

[117]  A. Ouerghi,et al.  Metallic Functionalization of CdSe 2D Nanoplatelets and Its Impact on Electronic Transport , 2016 .

[118]  U. Banin,et al.  Photocatalytic Reactive Oxygen Species Formation by Semiconductor-Metal Hybrid Nanoparticles. Toward Light-Induced Modulation of Biological Processes. , 2016, Nano letters.

[119]  Yadong Li,et al.  Synergetic Integration of Cu1.94S-ZnxCd1-xS Heteronanorods for Enhanced Visible-Light-Driven Photocatalytic Hydrogen Production. , 2016, Journal of the American Chemical Society.

[120]  L. Amirav,et al.  Stability of Seeded Rod Photocatalysts: Atomic Scale View , 2016 .

[121]  L. Manna,et al.  Forging Colloidal Nanostructures via Cation Exchange Reactions , 2016, Chemical reviews.

[122]  J. A. Wang,et al.  Advanced Catalytic Materials - Photocatalysis and Other Current Trends , 2016 .

[123]  Lilac Amirav,et al.  Perfect Photon-to-Hydrogen Conversion Efficiency. , 2016, Nano letters.

[124]  S. Linic,et al.  Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis , 2016, Nature Communications.

[125]  Francesco Scotognella,et al.  Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods , 2016, Nature Communications.

[126]  Alice D. P. Leach,et al.  A Synthetic Exploration of Metal–Semiconductor Hybrid Particles of CuInS2 , 2015 .

[127]  Jing Zhao,et al.  Generalized seeded growth of Ag-based metal chalcogenide nanorods via controlled chalcogenization of the seeds , 2015 .

[128]  Jai Hyun Koh,et al.  Uniform decoration of Pt nanoparticles on well-defined CdSe tetrapods and the effect of their Pt cluster size on photocatalytic H2 generation , 2015 .

[129]  Jacek K. Stolarczyk,et al.  Light-induced cation exchange for copper sulfide based CO2 reduction. , 2015, Journal of the American Chemical Society.

[130]  P. Moroz,et al.  Photocatalytic Applications of Colloidal Heterostructured Nanocrystals: What's Next? , 2015, The journal of physical chemistry letters.

[131]  J. Chen,et al.  Enhanced Photoluminescence Property for Quantum Dot-Gold Nanoparticle Hybrid , 2015, Nanoscale Research Letters.

[132]  M. Zhukovskyi,et al.  Efficient Photocatalytic Hydrogen Generation from Ni Nanoparticle Decorated CdS Nanosheets , 2015 .

[133]  L. Amirav,et al.  The golden gate to photocatalytic hydrogen production , 2015 .

[134]  Yu Huang,et al.  Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions. , 2015, Nano letters.

[135]  L. Amirav,et al.  Designing Bimetallic Co-Catalysts: A Party of Two. , 2015, The journal of physical chemistry letters.

[136]  M. Döblinger,et al.  Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances. , 2015, Journal of the American Chemical Society.

[137]  T. Lian,et al.  Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition , 2015, Science.

[138]  Qinghua Xu,et al.  Alloyed ZnS-CuInS2 Semiconductor Nanorods and Their Nanoscale Heterostructures for Visible-Light-Driven Photocatalytic Hydrogen Generation. , 2015, Chemistry.

[139]  A. Alivisatos,et al.  Modular synthesis of a dual metal-dual semiconductor nano-heterostructure. , 2015, Angewandte Chemie.

[140]  C. Klinke,et al.  Metal Domain Size Dependent Electrical Transport in Pt-CdSe Hybrid Nanoparticle Monolayers. , 2015, ACS nano.

[141]  L. Amirav,et al.  Less Is More: The Case of Metal Cocatalysts. , 2015, The journal of physical chemistry letters.

[142]  A. Feldhoff,et al.  Site-Selective Noble Metal Growth on CdSe Nanoplatelets , 2015 .

[143]  Haili He,et al.  The important role of surface ligand on CdSe/CdS core/shell nanocrystals in affecting the efficiency of H₂ photogeneration from water. , 2015, Nanoscale.

[144]  S. Dutta,et al.  Metal Semiconductor Heterostructures for Photocatalytic Conversion of Light Energy. , 2015, Journal of Physical Chemistry Letters.

[145]  Tianquan Lian,et al.  Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. , 2015, Accounts of chemical research.

[146]  N. Pradhan,et al.  Coincident Site Epitaxy at the Junction of Au–Cu2ZnSnS4 Heteronanostructures , 2015 .

[147]  T. Lian,et al.  Ultrafast exciton quenching by energy and electron transfer in colloidal CdSe nanosheet–Pt heterostructures† †Electronic supplementary information (ESI) available: Synthesis details, transient absorption set-ups, NS and NS–Pt spectra fitting, kinetics fitting model and parameters, details about the , 2014, Chemical science.

[148]  Francesco Scotognella,et al.  Effect of surface coating on the photocatalytic function of hybrid CdS-Au nanorods. , 2015, Small.

[149]  Jacek K. Stolarczyk,et al.  Size Effects on Photocatalytic H2 Generation with CdSe/CdS Core-Shell Nanocrystals , 2015 .

[150]  A. Rogach,et al.  Enhanced hydrogen evolution rates at high pH with a colloidal cadmium sulphide–platinum hybrid system , 2014 .

[151]  Anirban Dutta,et al.  Au-SnS Hetero Nanostructures: Size of Au Matters , 2014 .

[152]  David Volbers,et al.  Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. , 2014, Nature materials.

[153]  Mengya Liu,et al.  Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. , 2014, Journal of the American Chemical Society.

[154]  S. Aștilean,et al.  Controlling the Luminescence of Carboxyl-Functionalized CdSe/ZnS Core–Shell Quantum Dots in Solution by Binding with Gold Nanorods , 2014 .

[155]  J. Hou,et al.  One-step synthesis of hybrid nanocrystals with rational tuning of the morphology. , 2014, Nano letters.

[156]  Liang Gao,et al.  Synergetic Effect of Silver Nanocrystals Applied in PbS Colloidal Quantum Dots for High-Performance Infrared Photodetectors , 2014 .

[157]  U. Banin,et al.  Rhodium growth on Cu2S nanocrystals yielding hybrid nanoscale inorganic cages and their synergistic properties , 2014 .

[158]  Malinda D. Reichert,et al.  Cu2ZnSnS4−Au Heterostructures: Toward Greener Chalcogenide- Based Photocatalysts , 2014 .

[159]  N. Pradhan,et al.  Photocatalytic Au-Bi2S3 heteronanostructures. , 2014, Angewandte Chemie.

[160]  Xiaoqiang An,et al.  Cu(2)ZnSnS(4)-Pt and Cu(2)ZnSnS(4)-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. , 2014, Journal of the American Chemical Society.

[161]  David J. Singh,et al.  Light scattering and surface plasmons on small spherical particles , 2014, Light: Science & Applications.

[162]  Shenglin Jiang,et al.  Flexible lead sulfide colloidal quantum dot photodetector using pencil graphite electrodes on paper substrates , 2014 .

[163]  S. Sapra,et al.  Photocatalysis from Fluorescence-Quenched CdSe/Au Nanoheterostructures: A Size-Dependent Study. , 2014, The journal of physical chemistry letters.

[164]  Y. Yagcı,et al.  Semiconductor nanoparticles for photoinitiation of free radical polymerization in aqueous and organic media , 2014 .

[165]  Tianquan Lian,et al.  Hole removal rate limits photodriven H2 generation efficiency in CdS-Pt and CdSe/CdS-Pt semiconductor nanorod-metal tip heterostructures. , 2014, Journal of the American Chemical Society.

[166]  Xu‐Bing Li,et al.  Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation. , 2014, ChemSusChem.

[167]  J. Hong,et al.  Universal sulfide-assisted synthesis of M-Ag heterodimers (M = Pd, Au, Pt) as efficient platforms for fabricating metal-semiconductor heteronanostructures. , 2014, Journal of the American Chemical Society.

[168]  Jacob H. Olshansky,et al.  Hole transfer dynamics from a CdSe/CdS quantum rod to a tethered ferrocene derivative. , 2014, Journal of the American Chemical Society.

[169]  M. Ouyang,et al.  Controlling Structural Symmetry of a Hybrid Nanostructure and its Effect on Efficient Photocatalytic Hydrogen Evolution , 2014, Advanced materials.

[170]  Clare E. Rowland,et al.  In situ optical and structural studies on photoluminesence quenching in CdSe/CdS/Au heterostructures. , 2014, Journal of the American Chemical Society.

[171]  J. Vela,et al.  Super-resolution mapping of photogenerated electron and hole separation in single metal-semiconductor nanocatalysts. , 2014, Journal of the American Chemical Society.

[172]  Uri Banin,et al.  Hybrid Semiconductor–Metal Nanoparticles: From Architecture to Function , 2014 .

[173]  E. Fabrizio,et al.  Electrical contacts to nanorod networks at different length scales: From macroscale ensembles to single nanorod chains , 2013 .

[174]  N. Pradhan,et al.  Formation of heteroepitaxy in different shapes of Au-CdSe metal-semiconductor hybrid nanostructures. , 2013, Small.

[175]  Tianquan Lian,et al.  Plasmon-induced hot electron transfer from the Au tip to CdS rod in CdS-Au nanoheterostructures. , 2013, Nano letters.

[176]  X. Wen,et al.  Photoinduced Ultrafast Charge Separation in Plexcitonic CdSe/Au and CdSe/Pt Nanorods , 2013 .

[177]  Yi‐Jun Xu,et al.  Efficient electrostatic self-assembly of one-dimensional CdS-Au nanocomposites with enhanced photoactivity, not the surface plasmon resonance effect. , 2013, Nanoscale.

[178]  Jun Yang,et al.  Pt-CuS heterodimers by sulfidation of CuPt alloy nanoparticles and their selective catalytic activity toward methanol oxidation , 2013 .

[179]  Wing-Cheung Law,et al.  Au-Cu(2-x)Se heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. , 2013, Nano letters.

[180]  Ueli Heiz,et al.  Cluster size effects in the photocatalytic hydrogen evolution reaction. , 2013, Journal of the American Chemical Society.

[181]  H. Mattoussi,et al.  Quenching of Quantum Dot Emission by Fluorescent Gold Clusters: What It Does and Does Not Share with the Förster Formalism , 2013 .

[182]  Raymond E Schaak,et al.  Emerging strategies for the total synthesis of inorganic nanostructures. , 2013, Angewandte Chemie.

[183]  T. Shanmugapriya,et al.  Photoluminescence Enhancement of Nanogold Decorated CdS Quantum Dots , 2013 .

[184]  Milo J. Russell,et al.  Size-Dependence of the Plasmonic Near-Field Measured via Single-Nanoparticle Photoimaging , 2013 .

[185]  B. Liu,et al.  A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. , 2013, Nano letters.

[186]  E. Fabrizio,et al.  A new route to produce efficient surface-enhanced Raman spectroscopy substrates: gold-decorated CdSe nanowires , 2013, Journal of Nanoparticle Research.

[187]  Pavel Moroz,et al.  Improving the catalytic activity of semiconductor nanocrystals through selective domain etching. , 2013, Nano letters.

[188]  Seung Hyun Kim,et al.  Hot carrier-driven catalytic reactions on Pt-CdSe-Pt nanodumbbells and Pt/GaN under light irradiation. , 2013, Nano letters.

[189]  Molly B. Wilker,et al.  Charge transfer dynamics between photoexcited CdS nanorods and mononuclear Ru water-oxidation catalysts. , 2013, Journal of the American Chemical Society.

[190]  H. Oikawa,et al.  Highly Controlled Plasmonic Emission Enhancement from Metal-Semiconductor Quantum Dot Complex Nanostructures , 2013 .

[191]  N. Tamai,et al.  Ultrafast dynamics and single particle spectroscopy of Au-CdSe nanorods. , 2013, Physical chemistry chemical physics : PCCP.

[192]  U. Banin,et al.  Electronic properties of hybrid Cu2S/Ru semiconductor/metallic-cage nanoparticles , 2012, Nanotechnology.

[193]  Important role , 2012, Veterinary Record.

[194]  T. Sen,et al.  Photophysical properties of Au-CdTe hybrid nanostructures of varying sizes and shapes. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[195]  J. Jang,et al.  Geometric Effect of Single or Double Metal-Tipped CdSe Nanorods on Photocatalytic H2 Generation. , 2012, The journal of physical chemistry letters.

[196]  N. Nelson,et al.  Selective Alcohol Dehydrogenation and Hydrogenolysis with Semiconductor-Metal Photocatalysts: Toward Solar-to-Chemical Energy Conversion of Biomass-Relevant Substrates , 2012 .

[197]  Ququan Wang,et al.  Symmetric and asymmetric Au-AgCdSe hybrid nanorods. , 2012, Nano letters.

[198]  Sean E. DeRosa,et al.  Directing the deposition of ferromagnetic cobalt onto Pt-tipped CdSe@CdS nanorods: synthetic and mechanistic insights. , 2012, ACS nano.

[199]  Timothy F. O'Connor,et al.  The effect of the charge-separating interface on exciton dynamics in photocatalytic colloidal heteronanocrystals. , 2012, ACS nano.

[200]  Tianquan Lian,et al.  Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. , 2012, Journal of the American Chemical Society.

[201]  T. Lian,et al.  Enhanced multiple exciton dissociation from CdSe quantum rods: the effect of nanocrystal shape. , 2012, Journal of the American Chemical Society.

[202]  Yang Zhang,et al.  CdSe–Au nanorod networks welded by gold domains: a promising structure for nano-optoelectronic components , 2012, Journal of Nanoparticle Research.

[203]  T. Lian,et al.  Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. , 2012, Journal of the American Chemical Society.

[204]  Hongjian Yan,et al.  Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production , 2012 .

[205]  Stefan Fischbach,et al.  Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation , 2012 .

[206]  Ming Lin,et al.  Unusual Selectivity of Metal Deposition on Tapered Semiconductor Nanostructures , 2012 .

[207]  U. Banin,et al.  Structures and Mechanisms in the Growth of Hybrid Ru–Cu2S Nanoparticles: From Cages to Nanonets , 2012 .

[208]  R. Baer,et al.  Near-field manipulation of spectroscopic selection rules on the nanoscale , 2012, Proceedings of the National Academy of Sciences.

[209]  R. E. Schaak,et al.  Synthesis of Colloidal Au–Cu2S Heterodimers via Chemically Triggered Phase Segregation of AuCu Nanoparticles , 2012 .

[210]  L. Manna,et al.  Charge transport in nanoscale "all-inorganic" networks of semiconductor nanorods linked by metal domains. , 2012, ACS nano.

[211]  P. Kamat Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design. , 2012, The journal of physical chemistry letters.

[212]  K. Leung,et al.  Gold and iron oxide hybrid nanocomposite materials. , 2012, Chemical Society reviews.

[213]  Stefan Fischbach,et al.  Delayed photoelectron transfer in Pt-decorated CdS nanorods under hydrogen generation conditions. , 2012, Small.

[214]  Shuxin Ouyang,et al.  Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.

[215]  Tian Ming,et al.  Plasmon-Controlled Fluorescence: Beyond the Intensity Enhancement , 2012 .

[216]  J. Hou,et al.  Charge transfer and retention in directly coupled Au-CdSe nanohybrids , 2012, Nano Research.

[217]  B. Dubertret,et al.  Colloidal nanoplatelets with two-dimensional electronic structure. , 2011, Nature materials.

[218]  Congjun Wang,et al.  Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts , 2011 .

[219]  J. Vela,et al.  Controlled Fabrication of Colloidal Semiconductor-Metal Hybrid Heterostructures: Site Selective Metal Photo Deposition , 2011 .

[220]  Natalia Del Fatti,et al.  Absorption properties of metal-semiconductor hybrid nanoparticles. , 2011, ACS nano.

[221]  Timothy F. O'Connor,et al.  The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals. , 2011, Nano letters.

[222]  Ququan Wang,et al.  Synthesis of Au–CdS Core–Shell Hetero‐Nanorods with Efficient Exciton–Plasmon Interactions , 2011 .

[223]  Gregory V Hartland,et al.  Optical studies of dynamics in noble metal nanostructures. , 2011, Chemical reviews.

[224]  N. Hewa-Kasakarage,et al.  Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites. , 2011, Nano letters.

[225]  Xinheng Li,et al.  Light-induced selective deposition of metals on gold-tipped CdSe-seeded CdS nanorods. , 2011, Journal of the American Chemical Society.

[226]  U. Banin,et al.  Synthesis and photocatalytic properties of a family of CdS-PdX hybrid nanoparticles. , 2011, Angewandte Chemie.

[227]  C. Klinke,et al.  Growth and reductive transformation of a gold shell around pyramidal cadmium selenide nanocrystals , 2010, 1103.3131.

[228]  N. Hewa-Kasakarage,et al.  Tuning the Morphology of Au/CdS Nanocomposites through Temperature-Controlled Reduction of Gold-Oleate Complexes , 2010 .

[229]  Uri Banin,et al.  Hybrid nanoscale inorganic cages. , 2010, Nature materials.

[230]  Andrey L. Rogach,et al.  Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation , 2010 .

[231]  Christopher A. Barrett,et al.  Size controlled gold tip growth onto II–VI nanorods , 2010 .

[232]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[233]  Haibao Shao,et al.  Metal-enhanced fluorescence of CdTe nanocrystals in aqueous solution. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[234]  C. Murray,et al.  Size- and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. , 2010, Angewandte Chemie.

[235]  L. Manna,et al.  Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing. , 2010, Nano letters.

[236]  Uri Banin,et al.  Colloidal hybrid nanostructures: a new type of functional materials. , 2010, Angewandte Chemie.

[237]  Ting Yang,et al.  Interfacial Charge Carrier Dynamics in Core-Shell Au-CdS Nanocrystals , 2010 .

[238]  E. Shevchenko,et al.  "Magnet-in-the-semiconductor" FePt-PbS and FePt-PbSe nanostructures: magnetic properties, charge transport, and magnetoresistance. , 2010, Journal of the American Chemical Society.

[239]  Y. M. Tan,et al.  Asymmetric dumbbells from selective deposition of metals on seeded semiconductor nanorods. , 2010, Angewandte Chemie.

[240]  M. Ouyang,et al.  Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches , 2010, Science.

[241]  A. Paul Alivisatos,et al.  Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures , 2010 .

[242]  A. Walker,et al.  Facile One-Pot Synthesis of Metal−Semiconductor Hybrid Nanocrystals via Chemical Transformation: The Case of Cu−CuxS Heterodimers and Hetero-Oligomers , 2010 .

[243]  Rodolphe Jaffiol,et al.  Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources. , 2010, ACS nano.

[244]  Luigi Carbone,et al.  Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms , 2010 .

[245]  U. Banin,et al.  Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms. , 2009, Journal of the American Chemical Society.

[246]  John P. Baltrus,et al.  Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts , 2009 .

[247]  Luigi Carbone,et al.  Light-controlled one-sided growth of large plasmonic gold domains on quantum rods observed on the single particle level , 2009, BiOS.

[248]  Lin-wang Wang,et al.  Enhanced semiconductor nanocrystal conductance via solution grown contacts. , 2009, Nano letters.

[249]  M. De Giorgi,et al.  Fluorescent asymmetrically cobalt-tipped CdSe@CdS core@shell nanorod heterostructures exhibiting room-temperature ferromagnetic behavior. , 2009, Journal of the American Chemical Society.

[250]  U. Banin,et al.  Multiexciton engineering in seeded core/shell nanorods: transfer from type-I to quasi-type-II regimes. , 2009, Nano letters.

[251]  Tianyu Yang,et al.  Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures. , 2009, Physical review letters.

[252]  U. Banin,et al.  Cobalt growth on the tips of CdSe nanorods. , 2009, Angewandte Chemie.

[253]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[254]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[255]  Uri Banin,et al.  Growth of Photocatalytic CdSe–Pt Nanorods and Nanonets , 2008 .

[256]  A. Paul Alivisatos,et al.  Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures , 2008 .

[257]  Ting Yang,et al.  Au-CdS Core-Shell Nanocrystals with Controllable Shell Thickness and Photoinduced Charge Separation Property , 2008 .

[258]  K. Ryan,et al.  Gold tip formation on perpendicularly aligned semiconductor nanorod assemblies , 2008 .

[259]  U. Banin,et al.  Selective Gold Growth on CdSe Seeded CdS Nanorods , 2008 .

[260]  L. Manna,et al.  Growth of colloidal nanoparticles of group II–VI and IV–VI semiconductors on top of magnetic iron–platinum nanocrystals , 2008 .

[261]  Uri Banin,et al.  ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system. , 2008, Small.

[262]  E. Shevchenko,et al.  Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. , 2008, Journal of the American Chemical Society.

[263]  G. Stucky,et al.  One- and two-photon induced polymerization of methylmethacrylate using colloidal CdS semiconductor quantum dots. , 2008, Journal of the American Chemical Society.

[264]  A. Nozik Multiple exciton generation in semiconductor quantum dots , 2008 .

[265]  Peidong Yang,et al.  Selective growth of metal and binary metal tips on CdS nanorods. , 2008, Journal of the American Chemical Society.

[266]  C. Sönnichsen,et al.  Growth of Gold Tips onto Hyperbranched CdTe Nanostructures , 2008 .

[267]  Uri Banin,et al.  Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. , 2008, Nano letters.

[268]  Jack F Douglas,et al.  Synthesis and self-assembly of polymer-coated ferromagnetic nanoparticles. , 2007, ACS nano.

[269]  A. Furube,et al.  Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[270]  Bing Xu,et al.  Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: a simple preparation for multifunctional nanostructures. , 2007, Journal of the American Chemical Society.

[271]  Vincenzo Grillo,et al.  Topologically controlled growth of magnetic-metal-functionalized semiconductor oxide nanorods. , 2007, Nano letters.

[272]  V. Klimov,et al.  Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions. , 2006, Journal of the American Chemical Society.

[273]  U. Banin,et al.  Synthesis of hybrid CdS-Au colloidal nanostructures. , 2006, The journal of physical chemistry. B.

[274]  Liberato Manna,et al.  Synthesis, properties and perspectives of hybrid nanocrystal structures. , 2006, Chemical Society reviews.

[275]  Hendry. I. Elim,et al.  Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition. , 2006, Journal of the American Chemical Society.

[276]  A. Govorov,et al.  Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. , 2006, Physical review letters.

[277]  Garnett W. Bryant,et al.  Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies , 2006 .

[278]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[279]  Tymish Y. Ohulchanskyy,et al.  A general approach to binary and ternary hybrid nanocrystals. , 2006, Nano letters.

[280]  E. Rabani,et al.  Untitled #2 , 2020, Gender Futurity, Intersectional Autoethnography.

[281]  U. Banin,et al.  Electronic structure of metal-semiconductor nanojunctions in gold CdSe nanodumbbells. , 2005, Physical review letters.

[282]  Prashant V Kamat,et al.  Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. , 2005, Journal of the American Chemical Society.

[283]  Nicholas A. Kotov,et al.  Bioconjugates of CdTe Nanowires and Au Nanoparticles: Plasmon−Exciton Interactions, Luminescence Enhancement, and Collective Effects , 2004 .

[284]  Uri Banin,et al.  Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods , 2004, Science.

[285]  S. Wuister,et al.  Temperature antiquenching of the luminescence from capped CdSe quantum dots. , 2004, Angewandte Chemie.

[286]  Prashant V Kamat,et al.  Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[287]  Bing Xu,et al.  Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. , 2004, Journal of the American Chemical Society.

[288]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[289]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[290]  E. Wolf,et al.  Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration , 2003 .

[291]  Igor Nabiev,et al.  Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids , 2002 .

[292]  L. Novotný,et al.  Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement , 2002 .

[293]  Paul Mulvaney,et al.  Fermi Level Equilibration in Quantum Dot−Metal Nanojunctions† , 2001 .

[294]  Xiaogang Peng,et al.  Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. , 2001, Journal of the American Chemical Society.

[295]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[296]  Akira Fujishima,et al.  Recent topics in photoelectrochemistry: achievements and future prospects , 2000 .

[297]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[298]  A. Henglein,et al.  Size dependent properties of Au particles: Coherent excitation and dephasing of acoustic vibrational modes , 1999 .

[299]  Dieter Bimberg,et al.  Spontaneous ordering of nanostructures on crystal surfaces , 1999 .

[300]  Ivan V. Markov,et al.  Crystal growth for beginners , 1995 .

[301]  H. Metiu Surface enhanced spectroscopy , 1984 .

[302]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[303]  Slow Auger Recombination of Trapped Excitons Enables Efficient Multiple Electron Transfer in CdSPt Nanorod Heterostructures , 2022 .