Stable LPV Realization of Parametric Transfer Functions and Its Application to Gain-Scheduling Control Design

The paper deals with the stabilizability of linear plants whose parameters vary with time in a compact set. First, necessary and sufficient conditions for the existence of a linear gain-scheduled stabilizing compensator are given. Next, it is shown that, if these conditions are satisfied, any compensator transfer function depending on the plant parameters and internally stabilizing the closed-loop control system when the plant parameters are constant, can be realized in such a way that the closed-loop asymptotic stability is guaranteed under arbitrary parameter variations. To this purpose, it is preliminarily proved that any transfer function that is stable for all constant parameters values admits a realization that is stable under arbitrary parameter variations (linear parameter-varying (LPV) stability). Then, the Youla-Kucera parametrization of all stabilizing compensators is exploited; precisely, closed-loop LPV stability can be ensured by taking an LPV stable realization of the Youla-Kucera parameter. To find one such realization, a reasonably simple and general algorithm based on Lyapunov equations and Cholesky's factorization is provided. These results can be exploited to apply linear time-invarient design to LPV systems, thus achieving both pointwise optimality (or pole placement) and LPV stability. Some potential applications in adaptive control and online tuning are pointed out.

[1]  S. Behtash,et al.  Design of controllers for linear parameter-varying systems by the gain scheduling technique , 1992 .

[2]  P. Tsiotras,et al.  State-feedback controller synthesis for parameter-dependent LTI systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[3]  Chia-Chi Tsui A new design approach to unknown input observers , 1996, IEEE Trans. Autom. Control..

[4]  Graziano Chesi,et al.  Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.

[5]  Robert K. Brayton,et al.  Stability of dynamical systems: A constructive approach , 1979 .

[6]  Graziano Chesi,et al.  Robust analysis of linear systems affected by time-invariant hypercubic parametric uncertainty , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[7]  Tingshu Hu,et al.  Absolute stability with a generalized sector condition , 2004, IEEE Transactions on Automatic Control.

[8]  João Pedro Hespanha,et al.  Switching between stabilizing controllers , 2002, Autom..

[9]  Wilson J. Rugh,et al.  Gain scheduling dynamic linear controllers for a nonlinear plant , 1995, Autom..

[10]  M. Dinh,et al.  Parameter dependent H∞ control by finite dimensional LMI optimization: application to trade‐off dependent control , 2005 .

[11]  Vladimír Kučera,et al.  Analysis and design of discrete linear control systems , 1991 .

[12]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[13]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[14]  Franco Blanchini,et al.  Stabilization of LPV systems: state feedback, state estimation and duality , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[15]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[16]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[17]  Anders Helmersson μ synthesis and LFT gain scheduling with real uncertainties , 1998 .

[18]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[19]  Graziano Chesi,et al.  Robust stability of time-varying polytopic systems via parameter-dependent homogeneous Lyapunov functions , 2007, Autom..

[20]  L. Silverman,et al.  Constructive Stability and Asymptotic Stability of Dynamical Systems , 1980 .

[21]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[22]  Pierre-Alexandre Bliman Stabilization of LPV systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[23]  A. L. Zelentsovsky Nonquadratic Lyapunov functions for robust stability analysis of linear uncertain systems , 1994, IEEE Trans. Autom. Control..

[24]  Pierre-Alexandre Bliman,et al.  A Convex Approach to Robust Stability for Linear Systems with Uncertain Scalar Parameters , 2003, SIAM J. Control. Optim..

[25]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[26]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[27]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[28]  D. Luenberger An introduction to observers , 1971 .

[29]  Graziano Chesi,et al.  Robust stability of polytopic systems via polynomially parameter-dependent Lyapunov functions , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[30]  Mario Sznaier,et al.  Robust Systems Theory and Applications , 1998 .

[31]  Franco Blanchini,et al.  Nonquadratic Lyapunov functions for robust control , 1995, Autom..

[32]  Michael Athans,et al.  Analysis of gain scheduled control for nonlinear plants , 1990 .

[33]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[34]  Franco Blanchini,et al.  Stability results for linear parameter varying and switching systems , 2007, Autom..

[35]  G. Chesi Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems , 2009 .

[36]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[37]  L. Ghaoui,et al.  IMPROVED LMI CONDITIONS FOR GAIN SCHEDULING AND RELATED CONTROL PROBLEMS , 1998 .

[38]  Franco Blanchini,et al.  A separation principle for linear switching systems and parametrization of all stabilizing controllers , 2008, 2008 47th IEEE Conference on Decision and Control.

[39]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..