Modelling the Stationary Vibrations and Dissipative Heating of Thin-Walled Inelastic Elements with Piezoactive Layers

A coupled dynamic problem of thermoelectromechanics for thin-walled multilayer elements is formulated based on a geometrically nonlinear theory and the Kirchhoff–Love hypotheses. In the case of harmonic loading, an approximate formulation is given using the concept of complex moduli to characterize the cyclic properties of the material. The model problem on forced vibrations of sandwich beam, whose core layer is made of a passive physically nonlinear material, and face layers, of a viscoelastic piezoactive material, is considered as an example to demonstrate the possibility of damping the vibrations by applying harmonic voltage to the oppositely polarized layers of the beam. Substantiation is given for a linear control law with a complex coefficient for the electric potential, which provides damping of vibrations in the first symmetric mode at the linear and nonlinear stages of deformation. The stress–strain state and dissipative-heating temperature are studied