Scaling Machine Learning via Compressed Linear Algebra
暂无分享,去创建一个
Frederick Reiss | Peter J. Haas | Berthold Reinwald | Ahmed Elgohary | Matthias Boehm | Ahmed Elgohary | P. Haas | B. Reinwald | Matthias Boehm | Frederick Reiss
[1] Peter J. Haas,et al. Compressed Linear Algebra for Large-Scale Machine Learning , 2016, Proc. VLDB Endow..
[2] A. W. Kemp,et al. Univariate Discrete Distributions , 1993 .
[3] P. Haas,et al. Estimating the Number of Classes in a Finite Population , 1998 .
[4] Shirish Tatikonda,et al. On optimizing machine learning workloads via kernel fusion , 2015, PPoPP.
[5] Shirish Tatikonda,et al. SystemML: Declarative Machine Learning on Spark , 2016, Proc. VLDB Endow..
[6] Felix Naumann,et al. The Stratosphere platform for big data analytics , 2014, The VLDB Journal.
[7] Nectarios Koziris,et al. Optimizing sparse matrix-vector multiplication using index and value compression , 2008, CF '08.
[8] Michael J. Franklin,et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.
[9] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[10] Bin Cui,et al. Exploiting Matrix Dependency for Efficient Distributed Matrix Computation , 2015, SIGMOD Conference.
[11] Joseph M. Hellerstein,et al. MAD Skills: New Analysis Practices for Big Data , 2009, Proc. VLDB Endow..
[12] I. Good. THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS , 1953 .
[13] Shirish Tatikonda,et al. Resource Elasticity for Large-Scale Machine Learning , 2015, SIGMOD Conference.
[14] Razvan Pascanu,et al. Theano: A CPU and GPU Math Compiler in Python , 2010, SciPy.
[15] Yuan Yu,et al. TensorFlow: A system for large-scale machine learning , 2016, OSDI.
[16] Shivnath Babu,et al. Cumulon: optimizing statistical data analysis in the cloud , 2013, SIGMOD '13.
[17] Rong Jin,et al. Approximate kernel k-means: solution to large scale kernel clustering , 2011, KDD.
[18] Michael Stonebraker,et al. The Architecture of SciDB , 2011, SSDBM.
[19] Berthold Reinwald,et al. Declarative Machine Learning - A Classification of Basic Properties and Types , 2016, ArXiv.
[20] Peter J. Haas,et al. Ricardo: integrating R and Hadoop , 2010, SIGMOD Conference.