Solving variational inequality and fixed point problems by averaging and optimizing potentials

[1]  J. Dunn Global and Asymptotic Convergence Rate Estimates for a Class of Projected Gradient Processes , 1981 .

[2]  Jong-Shi Pang,et al.  Iterative methods for variational and complementarity problems , 1982, Math. Program..

[3]  Masao Fukushima,et al.  A globally convergent Newton method for solving strongly monotone variational inequalities , 1993, Math. Program..

[4]  J. Dunn Convergence Rates for Conditional Gradient Sequences Generated by Implicit Step Length Rules , 1980 .

[5]  Paul H. Calamai,et al.  Projected gradient methods for linearly constrained problems , 1987, Math. Program..

[6]  Robert Gardner,et al.  Introduction To Real Analysis , 1994 .

[7]  Stella Dafermos,et al.  An iterative scheme for variational inequalities , 1983, Math. Program..

[8]  Jia Hao Wu,et al.  A general descent framework for the monotone variational inequality problem , 1990, Math. Program..

[9]  J. Dunn,et al.  Conditional gradient algorithms with open loop step size rules , 1978 .

[10]  Georgia Perakis,et al.  Averaging Schemes for Variational Inequalities and Systems of Equations , 1997, Math. Oper. Res..

[11]  Ronald E. Bruck On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space , 1977 .

[12]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[13]  Gregory B. Passty Ergodic convergence to a zero of the sum of monotone operators in Hilbert space , 1979 .

[14]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[15]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[16]  P. Marcotte,et al.  A note on a globally convergent Newton method for solving monotone variational inequalities , 1986 .

[17]  D. Bertsekas On the Goldstein-Levitin-Polyak gradient projection method , 1974, CDC 1974.

[18]  Igor V. Konnov,et al.  A combined relaxation method for variational inequalities with nonlinear constraints , 1998, Math. Program..

[19]  S. Kaniel Construction of a fixed point for contractions in Banach space , 1971 .

[20]  S. Ishikawa Fixed points and iteration of a nonexpansive mapping in a Banach space , 1976 .

[21]  M. Fukushima,et al.  AN ITERATIVE METHOD FOR VARIATIONAL INEQUALITIES WITH APPLICATION TO TRAFFIC EQUILIBRIUM PROBLEMS , 1988 .

[22]  M. Todd The Computation of Fixed Points and Applications , 1976 .

[23]  Patrice Marcotte,et al.  Co-Coercivity and Its Role in the Convergence of Iterative Schemes for Solving Variational Inequalities , 1996, SIAM J. Optim..

[24]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[25]  P. Marcotte,et al.  On the convergence of projection methods: Application to the decomposition of affine variational inequalities , 1995 .

[26]  A. Auslender Optimisation : méthodes numériques , 1976 .

[27]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[28]  Jonathan Eckstein Splitting methods for monotone operators with applications to parallel optimization , 1989 .

[29]  Patrice Marcotte,et al.  Modified descent methods for solving the monotone variational inequality problem , 1993, Oper. Res. Lett..

[30]  Felix E. Browder,et al.  Convergence of approximants to fixed points of nonexpansive nonlinear mappings in banach spaces , 1967 .

[31]  J. Dunn On recursive averaging processes and Hilbert space extensions of the contraction mapping principle , 1973 .

[32]  J. Baillon Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert , 1975 .

[33]  Masao Fukushima,et al.  Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems , 1992, Math. Program..

[34]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[35]  Thomas L. Magnanti,et al.  Generalized Descent Methods for Asymmetric Systems of Equations , 1985, Math. Oper. Res..

[36]  Georgia Perakis,et al.  A unifying geometric solution framework and complexity analysis for variational inequalities , 1995, Math. Program..