Hypergraph Partitioning for Parallel Iterative Solution of General Sparse Linear Systems ∗

The efficiency of parallel iterative methods for solving linear systems, arising from reallife applications, depends greatly on matrix characteristics and on the amount of parallel overhead. It is often viewed that a major part of this overhead can be caused by parallel matrix-vector multiplications. However, for difficult large linear systems, the preconditioning operations needed to accelerate convergence are to be performed in parallel and may also incur substantial overhead. To obtain an efficient preconditioning, it is desirable to consider certain matrix numerical properties in the matrix partitioning process. In general, graph partitioners consider the nonzero structure of a matrix to balance the number of unknowns and to decrease communication volume among parts. The present work builds upon hypergraph partitioning techniques because of their ability to handle nonsymmetric and irregular structured matrices and because they correctly minimize communication volume. First, several hyperedge weight schemes are proposed to account for the numerical matrix property called diagonal dominance of rows and columns. Then, an algorithm for the independent partitioning of certain submatrices followed by the matching of the obtained parts is presented in detail along with a proof that it correctly minimizes the total communication volume. For the proposed variants of hypergraph partitioning models, numerical experiments compare the iterations to converge, investigate the diagonal dominance of the obtained parts, and show the values of the partitioning cost functions.

[1]  Rob H. Bisseling,et al.  Parallel hypergraph partitioning for scientific computing , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[2]  Masha Sosonkina,et al.  Distributed Schur Complement Techniques for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[3]  Wolfgang Fichtner,et al.  PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation , 2001, Future Gener. Comput. Syst..

[4]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[5]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[6]  Iain S. Duff,et al.  The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[7]  Olaf Schenk,et al.  The effects of unsymmetric matrix permutations and scalings in semiconductor device and circuit simulation , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  A. Neumaier,et al.  A NEW PIVOTING STRATEGY FOR GAUSSIAN ELIMINATION , 1996 .

[9]  Ümit V. Çatalyürek,et al.  Permuting Sparse Rectangular Matrices into Block-Diagonal Form , 2004, SIAM J. Sci. Comput..

[10]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[11]  Jun Zhang,et al.  Domain Decomposition and MultiLevel Type Techniques for General Sparse Linear Systems , 1997 .

[12]  Bora Uçar,et al.  Encapsulating Multiple Communication-Cost Metrics in Partitioning Sparse Rectangular Matrices for Parallel Matrix-Vector Multiplies , 2004, SIAM J. Sci. Comput..

[13]  Yousef Saad,et al.  Multilevel ILU With Reorderings for Diagonal Dominance , 2005, SIAM J. Sci. Comput..

[14]  George Karypis,et al.  Multilevel Algorithms for Multi-Constraint Hypergraph Partitioning , 1999 .

[15]  Tamara G. Kolda,et al.  Graph partitioning models for parallel computing , 2000, Parallel Comput..

[16]  Chris Walshaw,et al.  Multiphase mesh partitioning , 2000 .

[17]  Y. Saad,et al.  Experimental study of ILU preconditioners for indefinite matrices , 1997 .

[18]  Bruce Hendrickson,et al.  Graph Partitioning and Parallel Solvers: Has the Emperor No Clother? (Extended Abstract) , 1998, IRREGULAR.

[19]  Rob H. Bisseling,et al.  Communication balancing in parallel sparse matrix-vector multiplication , 2005 .

[20]  Yousef Saad,et al.  Multilevel Preconditioners Constructed From Inverse-Based ILUs , 2005, SIAM J. Sci. Comput..

[21]  Berkant Barla Cambazoglu,et al.  Multi-level direct K-way hypergraph partitioning with multiple constraints and fixed vertices , 2008, J. Parallel Distributed Comput..

[22]  Iain S. Duff,et al.  On Algorithms For Permuting Large Entries to the Diagonal of a Sparse Matrix , 2000, SIAM J. Matrix Anal. Appl..

[23]  B. Hendrickson The Chaco User � s Guide Version , 2005 .

[24]  Courtenay T. Vaughan,et al.  Zoltan data management services for parallel dynamic applications , 2002, Comput. Sci. Eng..

[25]  Brendan Vastenhouw,et al.  A Two-Dimensional Data Distribution Method for Parallel Sparse Matrix-Vector Multiplication , 2005, SIAM Rev..

[26]  Paolo Toth,et al.  Algorithm 548: Solution of the Assignment Problem [H] , 1980, TOMS.

[27]  Masha Sosonkina,et al.  Non-standard Parallel Solution Strategies for Distributed Sparse Linear Systems , 1999, ACPC.

[28]  Bruce Hendrickson,et al.  Partitioning for complex objectives , 2001, Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001.

[29]  Tamara G. Kolda,et al.  Partitioning Rectangular and Structurally Unsymmetric Sparse Matrices for Parallel Processing , 1999, SIAM J. Sci. Comput..

[30]  Matthias Bollhöfer,et al.  A robust ILU with pivoting based on monitoring the growth of the inverse factors , 2001 .

[31]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[32]  Ümit V. Çatalyürek,et al.  A Hypergraph-Partitioning Approach for Coarse-Grain Decomposition , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[33]  Thomas Lengauer,et al.  Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.

[34]  Bora Uçar,et al.  Revisiting Hypergraph Models for Sparse Matrix Partitioning , 2007, SIAM Rev..

[35]  I. Duff,et al.  Parallel preconditioners based on partitioning sparse matrices 1 , 2004 .

[36]  Bora Uçar,et al.  Partitioning Sparse Matrices for Parallel Preconditioned Iterative Methods , 2007, SIAM J. Sci. Comput..

[37]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[38]  Masha Sosonkina,et al.  pARMS: a parallel version of the algebraic recursive multilevel solver , 2003, Numer. Linear Algebra Appl..

[39]  Ümit V. Çatalyürek,et al.  Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication , 1999, IEEE Trans. Parallel Distributed Syst..

[40]  Vipin Kumar,et al.  Multilevel Algorithms for Multi-Constraint Graph Partitioning , 1998, Proceedings of the IEEE/ACM SC98 Conference.

[41]  Masha Sosonkina,et al.  Using the parallel algebraic recursive multilevel solver in modern physical applications , 2004, Future Gener. Comput. Syst..