Shape Bottlenecks and Conservative Flow Systems

This paper proposes an alternative to mathematical morphology to analyze complex shapes. This approach aims mainly at the detection of shape bottlenecks which are often of interest in medical imaging because of their anatomical meaning. The detection idea consists in simulating the steady state of an information transmission process between two parts of a complex object in order to highlight bottlenecks as areas of high information flow. This information transmission process is supposed to have a conservative flow which leads to the well-known Dirichlet-Neumann problem. This problem is solved using finite differences, over-relaxation and a raw to fine implementation. The method is applied to the detection of main bottlenecks of brain white matter network, namely corpus callosum, anterior commissure and brain stem.

[1]  M E Brummer,et al.  Hough transform detection of the longitudinal fissure in tomographic head images. , 1991, IEEE transactions on medical imaging.

[2]  Jan Voogd,et al.  The human central nervous system : a synopsis and atlas , 1978 .

[3]  Jerry L Prince,et al.  A computerized approach for morphological analysis of the corpus callosum. , 1996, Journal of computer assisted tomography.

[4]  J. Régis Anatomie sulcale profonde et cartographie fonctionnelle du cortex cerebral , 1994 .

[5]  Francis Schmitt,et al.  Deformable Models For Reconstructing Unstructured 3D Data , 1995, CVRMed.

[6]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  S. Clarke,et al.  Occipital cortex in man: Organization of callosal connections, related myelo‐ and cytoarchitecture, and putative boundaries of functional visual areas , 1990, The Journal of comparative neurology.

[8]  Guido Gerig,et al.  Segmentation of 3D Objects from MRI Volume Data Using Constrained Elastic Deformations of Flexible Fourier Surface Models , 1995, CVRMed.

[9]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[10]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[11]  Niklas Nordström Biased Anisotropic Diffusion - A Unified Regularization and Diffusion Approach to Edge Detection , 1990, ECCV.

[12]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[13]  D. Euvrard,et al.  Résolution numérique des équations aux dérivées partielles de la physique, de la mécanique et des sciences de l'ingénieur , 1987 .

[14]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[15]  Alain Le Pourhiet Résolution numérique des équations aux dérivées partielle , 1992 .