Automation of AMOEBA polarizable force field parameterization for small molecules

A protocol to generate parameters for the AMOEBA polarizable force field for small organic molecules has been established, and polarizable atomic typing utility, Poltype, which fully automates this process, has been implemented. For validation, we have compared with quantum mechanical calculations of molecular dipole moments, optimized geometry, electrostatic potential, and conformational energy for a variety of neutral and charged organic molecules, as well as dimer interaction energies of a set of amino acid side chain model compounds. Furthermore, parameters obtained in gas phase are substantiated in liquid-phase simulations. The hydration free energy (HFE) of neutral and charged molecules have been calculated and compared with experimental values. The RMS error for the HFE of neutral molecules is less than 1 kcal/mol. Meanwhile, the relative error in the predicted HFE of salts (cations and anions) is less than 3% with a correlation coefficient of 0.95. Overall, the performance of Poltype is satisfactory and provides a convenient utility for applications such as drug discovery. Further improvement can be achieved by the systematic study of various organic compounds, particularly ionic molecules, and refinement and expansion of the parameter database.

[1]  Araz Jakalian,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: I. Method , 2000 .

[2]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[3]  Thomas A. Halgren,et al.  The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .

[4]  K. Mikkelsen,et al.  Polarizability of molecular clusters as calculated by a dipole interaction model , 2002 .

[5]  M. Alderton,et al.  Distributed multipole analysis Methods and applications , 1985 .

[6]  Donald F. Hornig,et al.  Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra. , 1956 .

[7]  J. Šponer,et al.  Structure, Energetics, and Dynamics of the Nucleic Acid Base Pairs: Nonempirical ab initio Calculations , 2000 .

[8]  J. Thornton,et al.  Atlas of protein side-chain interactions , 1992 .

[9]  C David Sherrill,et al.  Formal Estimation of Errors in Computed Absolute Interaction Energies of Protein-ligand Complexes. , 2011, Journal of chemical theory and computation.

[10]  Nohad Gresh,et al.  Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy. , 2007, Journal of chemical theory and computation.

[11]  C. Cramer,et al.  Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. , 2006, The journal of physical chemistry. B.

[12]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[13]  Alexander D. MacKerell,et al.  Development of a polarizable intermolecular potential function (PIPF) for liquid amides and alkanes. , 2007, Journal of chemical theory and computation.

[14]  V. Sapunov,et al.  A new table of the thermodynamic quantities of ionic hydration: values and some applications (enthalpy–entropy compensation and Born radii) , 2000 .

[15]  Sotiris S. Xantheas,et al.  The parametrization of a Thole-type all-atom polarizable water model from first principles and its application to the study of water clusters (n=2–21) and the phonon spectrum of ice Ih , 1999 .

[16]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[17]  A. Buckingham Permanent and Induced Molecular Moments and Long‐Range Intermolecular Forces , 2007 .

[18]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[19]  Walter Thiel,et al.  QM/MM Methods for Biomolecular Systems , 2009 .

[20]  Pengyu Y. Ren,et al.  Calculation of protein–ligand binding free energy by using a polarizable potential , 2008, Proceedings of the National Academy of Sciences.

[21]  Kazumasa Honda,et al.  Ab initio calculations of structures and interaction energies of toluene dimers including CCSD(T) level electron correlation correction. , 2005, The Journal of chemical physics.

[22]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[23]  Alexander D. MacKerell,et al.  Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field. , 2010, Journal of chemical theory and computation.

[24]  Michael H. Abraham,et al.  Thermodynamics of solute transfer from water to hexadecane , 1990 .

[25]  Donald G Truhlar,et al.  X-Pol Potential: An Electronic Structure-Based Force Field for Molecular Dynamics Simulation of a Solvated Protein in Water. , 2009, Journal of chemical theory and computation.

[26]  Paul D Adams,et al.  Electronic Reprint Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow ): a Tool for Ligand Coordinate and Restraint Generation Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow): a Tool for Ligand Coordinate and Restraint Gener , 2022 .

[27]  Guohui Li,et al.  Trypsin‐ligand binding free energies from explicit and implicit solvent simulations with polarizable potential , 2009, J. Comput. Chem..

[28]  H. L. Morgan The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service. , 1965 .

[29]  Anthony J Stone,et al.  Distributed Multipole Analysis:  Stability for Large Basis Sets. , 2005, Journal of chemical theory and computation.

[30]  Jean-Philip Piquemal,et al.  Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field. , 2010, Journal of Chemical Theory and Computation.

[31]  M. Alderton,et al.  Distributed multipole analysis , 2006 .

[32]  Brad A. Bauer,et al.  Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface. , 2009, Journal of chemical theory and computation.

[33]  Timothy D. Fenn,et al.  Polarizable atomic multipole x-ray refinement: hydration geometry and application to macromolecules. , 2010, Biophysical journal.

[34]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[35]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[36]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[37]  C. David Sherrill,et al.  Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-Displaced Configurations , 2004 .

[38]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[39]  J. Helliwell,et al.  The determination of protonation states in proteins. , 2007, Acta crystallographica. Section D, Biological crystallography.

[40]  D. Langreth,et al.  Density-functional account of van der Waals forces between parallel surfaces , 1998 .

[41]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[42]  Ashcroft,et al.  Fluctuation attraction in condensed matter: A nonlocal functional approach. , 1991, Physical review. B, Condensed matter.

[43]  Nohad Gresh,et al.  Inclusion of the ligand field contribution in a polarizable molecular mechanics: SIBFA‐LF , 2003, J. Comput. Chem..

[44]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[45]  M. Tissandier,et al.  The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data , 1998 .

[46]  David L Mobley,et al.  Small molecule hydration free energies in explicit solvent: An extensive test of fixed-charge atomistic simulations. , 2009, Journal of chemical theory and computation.

[47]  M. Defranceschi,et al.  Theoretical Investigation of Small Alkali Cation−Molecule Clusters: A Model Potential Approach , 2004 .

[48]  Yue Shi,et al.  Multipole electrostatics in hydration free energy calculations , 2011, J. Comput. Chem..

[49]  Dian Jiao,et al.  Trypsin-ligand binding free energy calculation with AMOEBA , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[50]  Karel Berka,et al.  Representative Amino Acid Side Chain Interactions in Proteins. A Comparison of Highly Accurate Correlated ab Initio Quantum Chemical and Empirical Potential Procedures. , 2009, Journal of chemical theory and computation.

[51]  David L. Mobley,et al.  Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations , 2010, J. Comput. Aided Mol. Des..

[52]  Pedro E. M. Lopes,et al.  Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications , 2009, Theoretical chemistry accounts.

[53]  Pengyu Y. Ren,et al.  Consistent treatment of inter‐ and intramolecular polarization in molecular mechanics calculations , 2002, J. Comput. Chem..

[54]  Christopher I. Bayly,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..

[55]  Donald G. Truhlar,et al.  MODEL FOR AQUEOUS SOLVATION BASED ON CLASS IV ATOMIC CHARGES AND FIRST SOLVATION SHELL EFFECTS , 1996 .

[56]  Piotr Cieplak,et al.  Polarization effects in molecular mechanical force fields , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[57]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[58]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[59]  Pengyu Y. Ren,et al.  Ion solvation thermodynamics from simulation with a polarizable force field. , 2003, Journal of the American Chemical Society.

[60]  Walter Thiel,et al.  QM/MM methods for biomolecular systems. , 2009, Angewandte Chemie.

[61]  T. Darden,et al.  Molecular dynamics simulations of biomolecules: long-range electrostatic effects. , 1999, Annual review of biophysics and biomolecular structure.

[62]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..