Utilization of excess wind power in electric vehicles

This article describes the assessment of future wind power utilization for charging electric vehicles (EVs) in Germany. The potential wind power production in the model years 2020 and 2030 is derived by extrapolating onshore wind power generation and offshore wind speeds measured in 2007 and 2010 to the installed onshore and offshore wind turbine capacities assumed for 2020 and 2030. The energy consumption of an assumed fleet of 1 million EVs in 2020 and 6 million in 2030 is assessed using detailed models of electric vehicles, real world driving cycles and car usage.

[1]  Kai Strunz,et al.  Integration of surplus wind energy by controlled charging of electric vehicles , 2012, 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe).

[2]  Heidi Heinrichs,et al.  The German "Energiewende" - A Scenario Analysis , 2012 .

[3]  Michael Schlesinger,et al.  Szenarien für ein Energiekonzept der Bundesregierung , 2010 .

[4]  P. Markewitz,et al.  Ecological Evaluation of Coal-fired Oxyfuel Power Plants -cryogenic Versus Membrane-based Air Separation- , 2013 .

[5]  Macroeconomic Effects of the German Government’s Building Rehabilitation Program , 2012 .

[6]  S. Vögele,et al.  Decisions on Investments in Photovoltaics and Carbon Capture and Storage: A Comparison between Two Different Greenhouse Gas Control Strategies , 2012 .

[7]  A. Schroeder,et al.  The economics of fast charging infrastructure for electric vehicles , 2012 .

[8]  D. Stolten,et al.  GIS-based scenario calculations for a nationwide German hydrogen pipeline infrastructure , 2013 .

[9]  Wolfgang Fischer,et al.  Measuring social welfare, energy and inequality in Germany , 2012 .

[10]  David Dallinger,et al.  Vehicle-to-Grid Regulation Reserves Based on a Dynamic Simulation of Mobility Behavior , 2011, IEEE Transactions on Smart Grid.

[11]  Michael Metz,et al.  Electric vehicles as flexible loads – A simulation approach using empirical mobility data , 2012 .

[12]  B. Lenz Mobilität in Deutschland , 2011 .

[13]  Claus Krog Ekman,et al.  On the synergy between large electric vehicle fleet and high wind penetration – An analysis of the Danish case , 2011 .

[14]  GIS-based analysis of hydrogen pipeline infrastructure for different supply and demand options , 2012 .

[15]  Benjamin Schott,et al.  Netzintegration von Fahrzeugen mit elektrifizierten Antriebssystemen in bestehende und zukünftige Energieversorgungsstrukturen (NET-ELAN): Endbericht , 2012 .

[16]  S. Fan,et al.  Wireless energy transfer with the presence of metallic planes , 2011 .

[18]  Dirk T. G. Rübbelke,et al.  Effects of Carbon Dioxide Capture and Storage in Germany on European Electricity Exchange and Welfare , 2013 .

[19]  John Gale,et al.  OVERALL ENVIRONMENTAL IMPACTS OF CCS TECHNOLOGIES-A LIFE CYCLE APPROACH , 2012 .