Nano-cross-junction effect on phonon transport in silicon nanowire cages

Wave effects of phonons can give rise to controllability of heat conduction in nanostructures beyond that by particle scattering at surfaces and interfaces. In this paper, we propose a new class of three-dimensional nanostructures: a silicon-nanowire-cage (SiNWC) structure consisting of silicon nanowires (SiNWs) connected by nano-cross-junctions. We perform equilibrium molecular dynamics simulations and find an ultralow value of thermal conductivity of SiNWC, $0.173\phantom{\rule{0.16em}{0ex}}\mathrm{W}{\mathrm{m}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$, which is one order lower than that of SiNWs. By further modal analysis and atomistic Green's function calculations, we identify that the large reduction is due to significant phonon localization induced by the phonon local resonance and hybridization at the junction part in a wide range of phonon modes. This localization effect does not require the cage to be periodic, unlike the phononic crystals, and can be realized in structures that are easier to synthesize, for instance in a form of randomly oriented SiNW network.

[1]  Nuo Yang,et al.  Violation of Fourier's Law and Anomalous Heat Diffusion in Silicon , 2010, 1002.3419.

[2]  Arun Majumdar,et al.  Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport. , 2010, Nano letters.

[3]  E. Pop,et al.  Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. , 2010, Nano letters.

[4]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[5]  Madhu Menon,et al.  Thermal conductivity in thin silicon nanowires: phonon confinement effect. , 2007, Nano letters.

[6]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[7]  Andrew G. Glen,et al.  APPL , 2001 .

[8]  Gang Chen,et al.  High-performance flat-panel solar thermoelectric generators with high thermal concentration. , 2011, Nature materials.

[9]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[10]  M. Tiwari,et al.  Significant thermal conductivity reduction of silicon nanowire forests through discrete surface doping of germanium , 2015 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  A. Majumdar,et al.  Quantifying surface roughness effects on phonon transport in silicon nanowires. , 2012, Nano letters.

[13]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[14]  Kang L. Wang,et al.  Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons , 1999 .

[15]  Sebastian Wille,et al.  Rapid Fabrication Technique for Interpenetrated ZnO Nanotetrapod Networks for Fast UV Sensors , 2014, Advanced materials.

[16]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[17]  M. Nomura,et al.  Heat conduction tuning by wave nature of phonons , 2015, Science Advances.

[18]  Yiying Wu,et al.  Thermal conductivity of Si/SiGe superlattice nanowires , 2003 .

[19]  Charles M. Lieber,et al.  Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. , 2012, Nature materials.

[20]  Kui‐Qing Peng,et al.  Silicon Nanowires for Photovoltaic Solar Energy Conversion , 2011, Advanced materials.

[21]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[22]  Fang Qian,et al.  Rational growth of branched and hyperbranched nanowire structures , 2004 .

[23]  E. Pop,et al.  Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires. , 2009, Physical review letters.

[24]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[25]  Bozhi Tian,et al.  Single crystalline kinked semiconductor nanowire superstructures , 2009, Nature nanotechnology.

[26]  Yue Wu,et al.  Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications. , 2012, Nano letters.

[27]  Sebastian Volz,et al.  Molecular dynamics simulation of thermal conductivity of silicon nanowires , 1999 .

[28]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[29]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[30]  Kang L. Wang,et al.  Enhancement of the thermoelectric figure of merit of Si1−xGex quantum wires due to spatial confinement of acoustic phonons , 2000 .

[31]  Sokrates T. Pantelides,et al.  Dynamical simulations of nonequilibrium processes — Heat flow and the Kapitza resistance across grain boundaries , 1997 .

[32]  Nuo Yang,et al.  Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores. , 2014, Nano letters.

[33]  T. Rabczuk,et al.  Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects. , 2013, Nano letters.

[34]  M. Dresselhaus,et al.  Recent developments in thermoelectric materials , 2003 .

[35]  S. Phillpot,et al.  Vibrations and thermal transport in nanocrystalline silicon , 2006 .

[36]  D. Poulikakos,et al.  Thermal conductivity reduction in core-shell nanowires , 2011 .

[37]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[38]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[39]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[40]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[41]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[42]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[43]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[44]  Ali Shakouri,et al.  Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking. , 2015, Nano letters.

[45]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[46]  Gang Zhang,et al.  Remarkable reduction of thermal conductivity in silicon nanotubes. , 2010, Nano letters.

[47]  A. Majumdar Thermoelectricity in Semiconductor Nanostructures , 2004, Science.

[48]  D. Poulikakos,et al.  Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. , 2011, Nano letters.