A priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation

The scalar dissipation rate transport in both the corrugated flamelet and thin reaction zone regimes is studied using three-dimensional direct numerical simulation (DNS) databases for freely propagating statistically planar turbulent premixed flames. Both flames have comparable turbulent Reynolds number but the flame representing the corrugated flamelet combustion regime has a global Damkohler number, Da>1, whereas the second flame representing the thin reaction zone regime has Da 1 flame, while it produces the scalar gradients in the Da<1 flame. Simple algebraic models for the con...

[1]  Thierry Poinsot,et al.  Flame Stretch and the Balance Equation for the Flame Area , 1990 .

[2]  D. Veynante,et al.  Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion , 1998 .

[3]  Nedunchezhian Swaminathan,et al.  Scalar dissipation, diffusion and dilatation in turbulent H2-air premixed flames with complex chemistry , 2001 .

[4]  J. B. Moss,et al.  Unified modeling approach for premixed turbulent combustion—Part I: General formulation , 1985 .

[5]  Robert W. Bilger,et al.  Some Aspects of Scalar Dissipation , 2004 .

[6]  Nedunchezhian Swaminathan,et al.  Scalar dissipation and flame surface density in premixed turbulent combustion , 2006 .

[7]  Stephen B. Pope,et al.  Modelling of flamelet surface-to-volume ratio in turbulent premixed combustion , 1991 .

[8]  A. Kerstein,et al.  Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence , 1987 .

[9]  Nedunchezhian Swaminathan,et al.  Analyses of conditional moment closure for turbulent premixed flames , 2001 .

[10]  Roland Borghi,et al.  Towards an extended scalar dissipation equation for turbulent premixed combustion , 2003 .

[11]  Luc Vervisch,et al.  Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches , 1995 .

[12]  K. Bray,et al.  Turbulent flows with premixed reactants , 1980 .

[13]  G. Batchelor,et al.  The effect of homogeneous turbulence on material lines and surfaces , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[15]  Tarek Echekki,et al.  Unsteady strain rate and curvature effects in turbulent premixed methane-air flames , 1996 .

[16]  K. Bray,et al.  Studies of the turbulent burning velocity , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[17]  Roland Borghi,et al.  On the scales of the fluctuations in turbulent combustion , 1979 .

[19]  Nedunchezhian Swaminathan,et al.  Effect of dilatation on scalar dissipation in turbulent premixed flames , 2005 .

[20]  Robert McDougall Kerr,et al.  Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence , 1983, Journal of Fluid Mechanics.

[21]  D. Veynante,et al.  Gradient and counter-gradient scalar transport in turbulent premixed flames , 1997, Journal of Fluid Mechanics.

[22]  Thierry Mantel,et al.  A new model of premixed wrinkled flame propagation based on a scalar dissipation equation , 1994 .

[23]  Nilanjan Chakraborty,et al.  Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow-outflow configuration , 2004 .

[24]  Nilanjan Chakraborty,et al.  Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. II. Model development , 2007 .

[25]  A. Townsend,et al.  Decay of turbulence in the final period , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  Ray W. Grout,et al.  Interaction of turbulence and scalar fields in premixed flames , 2006 .

[27]  Martin R. Maxey,et al.  Small‐scale features of vorticity and passive scalar fields in homogeneous isotropic turbulence , 1991 .

[28]  E. Hawkes,et al.  Physical and numerical realizability requirements for flame surface density approaches , 2001 .

[29]  R. Rogallo Numerical experiments in homogeneous turbulence , 1981 .

[30]  F. Williams,et al.  Turbulent Reacting Flows , 1981 .

[31]  Stephen B. Pope,et al.  The evolution of surfaces in turbulence , 1988 .

[32]  Thierry Poinsot,et al.  Quenching processes and premixed turbulent combustion diagrams , 1991, Journal of Fluid Mechanics.

[33]  Nilanjan Chakraborty,et al.  Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight , 2007 .

[34]  Robert W. Bilger,et al.  Scalar gradient and related quantities in turbulent premixed flames , 1997 .

[35]  Paul A. Libby,et al.  Implications of the laminar flamelet model in premixed turbulent combustion , 1980 .

[36]  R. Borghi,et al.  Turbulent premixed combustion: Further discussions on the scales of fluctuations , 1990 .

[37]  S. Pope PDF methods for turbulent reactive flows , 1985 .

[38]  Jacqueline H. Chen,et al.  Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames , 1998 .

[39]  Thierry Poinsot,et al.  Numerical simulations of Lewis number effects in turbulent premixed flames , 1992, Journal of Fluid Mechanics.