The Effects of Load Ratio on Threshold Fatigue Crack Growth of Aluminum Alloys

...................................................................................................... ii DEDICATION .................................................................................................. iv ACKNOWLEDGEMENTS .............................................................................v LIST OF FIGURES ...........................................................................................x LIST OF TABLES ........................................................................................ xxii NOMENCLATURE ..................................................................................... xxiii PART I – Introduction and Objectives ................................................1 CHAPTER 1 – INTRODUCTION .............................................................2 1.1 – INTRODUCTION TO FATIGUE CRACK GROWTH ..................................2 1.2 – FATIGUE CRACK GROWTH BEHAVIOR OF ENGINEERING METALS ....................................................................................................3 1.3 – DAMAGE TOLERANT DESIGN .................................................................4 1.4 – FATIGUE CRACK GROWTH LOAD RATIO EFFECTS ............................5 1.5 – PROBLEM STATEMENT ............................................................................6 1.6 – LITERATURE REVIEW ...............................................................................7 1.6.1 – Threshold testing procedures .................................................................7 1.6.2 – Fatigue crack closure .............................................................................8 1.6.3 – Closure-free load ratio effects ...............................................................8 1.6.4 – Short crack issues ................................................................................10 1.6.5 – Other influences to consider ................................................................12 CHAPTER 2 – RESEARCH MOTIVATION, OBJECTIVES, AND APPROACH ..............................................................................13 2.1 – MOTIVATION FOR RESEARCH ..............................................................13 2.2 – RESEARCH OBJECTIVES ........................................................................14 2.3 – TECHNICAL APPROACH .........................................................................16 2.4 – PITFALLS TO AVOID ...............................................................................17 PART II – Research ...................................................................................18 CHAPTER 3 – FATIGUE CRACK CLOSURE MODEL ................19 3.1 – INTRODUCTION .......................................................................................19 3.2 – MODEL DEVELOPMENT .........................................................................20 3.2.1 – Consideration of RICC and crack meandering .....................................20 3.2.2 – Stress intensity factors .........................................................................21 3.2.3 – Elastic crack face displacements ..........................................................23 3.2.4 – Consideration of crack-tip plasticity and PICC .....................................23 3.2.5 – Consideration of OICC.........................................................................28

[1]  S. Purushothaman,et al.  A fatigue crack growth mechanism for ductile materials , 1975 .

[2]  A. Gokhale,et al.  Effect of crack surface geometry on fatigue crack closure , 1995 .

[3]  P. C. Paris,et al.  The Stress Analysis of Cracks Handbook, Third Edition , 2000 .

[4]  J. C. Newman,et al.  Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior , 1999 .

[5]  Leonard C. Feldman,et al.  Fundamentals of Surface and Thin Film Analysis , 1986 .

[6]  James C. Newman FASTRAN-2: A fatigue crack growth structural analysis program , 1992 .

[7]  M. S. Hunter,et al.  Natural and Thermally Formed Oxide Films on Aluminum , 1956 .

[8]  E. Tschegg,et al.  Sliding mode crack closure and mode III fatigue crack growth in mild steel , 1983 .

[9]  R. McClung Analysis of Fatigue Crack Closure During Simulated Threshold Testing , 2000 .

[10]  S. Suresh,et al.  Mechanisms of Slow Fatigue Crack Growth in High Strength Aluminum Alloys: Role of Microstructure and Environment , 1984 .

[11]  J. Weertman,et al.  Crack closure and crack propagation rates in 7050 aluminum , 1981 .

[12]  A. Gokhale,et al.  Relationship between fracture toughness, fracutre path, and microstructure of 7050 aluminum alloy: Part II. Multiple micromechanisms-based fracture toughness model , 1998 .

[13]  A. Evans,et al.  A damage model of creep crack growth in polycrystals , 1983 .

[14]  Morris E. Fine,et al.  Fatigue Crack initiation and microcrack growth in 2024-T4 and 2124-T4 aluminum alloys , 1979 .

[15]  William A. Herman,et al.  A SIMPLIFIED LABORATORY APPROACH FOR THE PREDICTION OF SHORT CRACK BEHAVIOR IN ENGINEERING STRUCTURES , 1988 .

[16]  R. Piascik,et al.  Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024 , 1998 .

[17]  James C. Newman,et al.  Fatigue crack growth thresholds, endurance limits, and design , 2000 .

[18]  R. Pippan The condition for the cyclic plastic deformation of the crack tip: the influence of dislocation obstacles , 1992 .

[19]  Amit K. Ghosh,et al.  Microstructural evolution and superplastic deformation behavior of fine grain 5083Al , 1996 .

[20]  J. W. Provan,et al.  The effect of crack wake characteristics on fatigue crack closure: Part II — a non-uniform wake study , 1993 .

[21]  Robert S. Piascik,et al.  Environmental fatigue of an Al-Li-Cu alloy: Part II. Microscopic hydrogen cracking processes , 1993, Metallurgical and Materials Transactions A.

[22]  G Hua,et al.  Growth of Fatigue Cracks Under Combined Mode I and Mode II Loads , 1985 .

[23]  John Dundurs,et al.  Interaction between an edge dislocation and a circular inclusion , 1964 .

[24]  H. Exner,et al.  A model for roughness-induced fatigue crack closure , 1998 .

[25]  Paul C. Paris,et al.  Service load fatigue damage — a historical perspective , 1999 .

[26]  W. Elber Crack-closure and crack-growth measurements in surface-flawed titanium alloy Ti6Al-4V , 1975 .

[27]  Peter J. Laz,et al.  Fatigue life prediction from inclusion initiated cracks , 1998 .

[28]  Ming Gao,et al.  Reconsideration of the superposition model for environmentally assisted fatigue crack growth , 1983 .

[29]  J. W. Provan,et al.  The effect of crack wake characteristics on fatigue crack closure: Part I—a crack wake removal study , 1993 .

[30]  R. Ritchie,et al.  Small fatigue cracks , 1986 .

[31]  J. Lankford,et al.  THE EFFECT OF WATER VAPOR ON FATIGUE CRACK TIP MECHANICS IN 7075-T651 ALUMINUM ALLOY , 1983 .

[32]  N.J.I. Adams,et al.  Fatigue crack closure at positive stresses , 1972 .

[33]  Michael A. Sutton,et al.  Local crack closure measurements: Development of a measurement system using computer vision and a far-field microscope , 1999 .

[34]  R. Ritchie,et al.  On the Role of Crack Closure Mechanisms in Influencing Fatigue Crack Growth Following Tensile Overloads in a Titanium Alloy: Near Threshold Versus Higher Δ K Behavior , 1988 .

[35]  V. Rich Personal communication , 1989, Nature.

[36]  M. Brown,et al.  A model for sliding mode crack closure part I: Theory for pure mode II loading , 1995 .

[37]  Ad Wilson Fractographic Characterization of the Effect of Inclusions on Fatigue Crack Propagation , 1981 .

[38]  D. Watt,et al.  Fracture surface interference in shear—II. Experimental measurements of crack tip displacement field under mode II loading in 7075-T6 Al , 1995 .

[39]  Rj Bucci,et al.  Pitfalls to Avoid in Threshold Testing and its Interpretation , 2000 .

[40]  E. Starke,et al.  A model for fatigue crack closure , 1984 .

[41]  J. Newman,et al.  ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies , 1990 .

[42]  S. Suresh,et al.  Influence of corrosion deposits on near-threshold fatigue crack growth behavior in 2xxx and 7xxx series aluminum alloys , 1982 .

[43]  J. Llorca,et al.  ROUGHNESS-INDUCED FATIGUE CRACK CLOSURE: A NUMERICAL STUDY , 1992 .

[44]  K. Jata,et al.  Influence of Environment and Creep on Fatigue Crack Growth in a High Temperature Aluminum Alloy 8009 , 1994 .

[45]  Doquet Micromechanical simulations of microstructure-sensitive Stage I fatigue crack growth , 1999 .

[46]  H. Westengen Tensile Deformation of a Fine-grained Al-alloy , 1982 .

[47]  S. Pearson Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks , 1975 .

[48]  J. F. Knott,et al.  Mechanisms of fatigue crack growth in low alloy steel , 1973 .

[49]  H. Wilsdorf The ductile fracture of metals: A microstructural viewpoint , 1983 .

[50]  J. Newman Fracture Mechanics Parameters for Small Fatigue Cracks , 1992 .

[51]  J. Im,et al.  Cavity formation from inclusions in ductile fracture , 1975 .

[52]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[53]  S. Suresh,et al.  Oxide-Induced Crack Closure: An Explanation for Near-Threshold Corrosion Fatigue Crack Growth Behavior , 1981 .

[54]  J. Newman A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading , 1981 .

[55]  J. Hatch,et al.  Aluminum: Properties and Physical Metallurgy , 1984 .

[56]  W. F. Deans,et al.  A strain gauging technique for monitoring fracture mechanics specimens during environmental testing , 1977 .

[57]  G. Luetjering,et al.  Influence of Grain Size and Age-Hardening on Dislocation Pile-Ups and Tensile Fracture for a Ti-AI Alloy , 1982 .

[58]  R. C. McClung Finite element modeling of crack closure during simulated fatigue threshold testing , 1991 .

[59]  P. Thomason,et al.  A VIEW ON DUCTILE‐FRACTURE MODELLING , 1998 .

[60]  H. W. Liu A dislocation barrier model for fatigue limit – as determined by crack non-initiation and crack non-propagation , 1999 .

[61]  J. D. Eshelby,et al.  XLI. The equilibrium of linear arrays of dislocations. , 1951 .

[62]  John W. Hutchinson,et al.  Analysis of Closure in Fatigue Crack Growth , 1978 .

[63]  Hideo Yoshida,et al.  Aluminum and Aluminum Alloys , 1980 .

[64]  T. Ogawa,et al.  THE EFFECTS OF STRESS RATIO ON THE GROWTH BEHAVIOUR OF SMALL FATIGUE CRACKS IN AN ALUMINUM ALLOY 7075‐T6 (WITH SPECIAL INTEREST IN STAGE I CRACK GROWTH) , 1990 .

[65]  M. Plesha,et al.  The effects of crack surface friction and roughness on crack tip stress fields , 1987 .

[66]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[67]  Xu-Dong Li DISLOCATION PILE-UP MODEL OF FATIGUE THRESHOLDS FOR 2024- AND 7075-ALIKE ALUMINIUM ALLOYS , 1996 .

[68]  E. K. Tschegg,et al.  Mode III and Mode I fatigue crack propagation behaviour under torsional loading , 1983 .

[69]  J. Harder,et al.  A crystallographic model for the study of local deformation processes in polycrystals , 1999 .

[70]  C. J. Beevers,et al.  A FATIGUE CRACK CLOSURE MECHANISM IN TITANIUM , 1979 .

[71]  T. Gross,et al.  Mode I stress intensity factors induced by fracture surface roughness under pure mode III loading: Application to the effect of loading modes on stress corrosion crack growth , 1989 .

[72]  J. Yates,et al.  A model for sliding mode crack closure part II: mixed mode I and II loading and application , 1995 .

[73]  R. Piascik,et al.  Environmental fatigue of an Al-Li-Cu alloy: part I. Intrinsic crack propagation kinetics in hydrogenous environments , 1991 .

[74]  R. Gangloff,et al.  Elevated temperature fracture of RS/PM alloy 8009: part i. fracture mechanics behavior , 1994 .

[75]  Jing-Song Pan,et al.  Void growth ahead of a dominant crack in a material which deforms by coble creep , 1993 .

[76]  Anthony P. Reynolds,et al.  CONSTANT AMPLITUDE AND POST-OVERLOAD FATIGUE CRACK GROWTH BEHAVIOR IN PM ALUMINUM ALLOY AA 8009 , 1992 .

[77]  Kunigal N. Shivakumar,et al.  An equivalent domain integral method in the two-dimensional analysis of mixed mode crack problems , 1990 .

[78]  K. Komai,et al.  Mechanical Effects of Corrosion Products in Corrosion Fatigue Crack Growth of a Steel , 1981 .

[79]  P. Liaw Overview of Crack Closure at Near-Threshold Fatigue Crack Growth Levels , 1988 .

[80]  J. P. Lucas,et al.  A PROPOSED CRITERION FOR FATIGUE THRESHOLD: DISLOCATION SUBSTRUCTURE APPROACH , 1983 .

[81]  J. Halling,et al.  Experimental Study of the Plastic Interaction of Model Surface Asperities during Sliding , 1968 .

[82]  G. W. Simmons,et al.  Recent progress in understanding environment assisted fatigue crack growth , 1981 .

[83]  R. Ohtani,et al.  Creep cavity growth under interaction between lattice diffusion and grain-boundary diffusion , 1998 .

[84]  T. R. Clark,et al.  A TECHNICAL NOTE. INFLUENCE OF MEAN STRESS ON FATIGUE IN SEVERAL ALUMINIUM ALLOYS UTILIZING Kcmax THRESHOLD PROCEDURES , 1996 .

[85]  K. Chawla,et al.  Mechanical Behavior of Materials , 1998 .

[86]  Robert S. Piascik,et al.  Effects of K max on Fatigue Crack Growth Threshold in Aluminum Alloys , 2000 .

[87]  R. A. Everett,et al.  Damage Tolerance Issues as Related to Metallic Rotorcraft Dynamic Components , 2000 .

[88]  Paul Lipinski,et al.  Micromechanical modelling of the elastoplastic behavior of polycrystals containing precipitates— Application to hypo- and hyper-eutectoid steels , 1997 .

[89]  J. Weertman,et al.  Double slip plane crack model , 1983 .

[90]  A. Argon,et al.  Separation of second phase particles in spheroidized 1045 steel, Cu-0.6pct Cr alloy, and maraging steel in plastic straining , 1975 .

[91]  A. Misra,et al.  Slip transfer and dislocation nucleation processes in multiphase ordered Ni-Fe-Al alloys , 1999 .

[92]  Abel,et al.  Modelling of crack surface interference under cyclic shear loads , 1999 .

[93]  Leon Mishnaevsky,et al.  In-situ observation of damage evolution and fracture in AlSi7Mg0.3 cast alloys , 1999 .

[94]  W. Morris,et al.  A simple model of stress intensity range threshold and crack closure stress , 1983 .

[95]  E. Wolf Fatigue crack closure under cyclic tension , 1970 .

[96]  B. R. Kirby,et al.  SLOW FATIGUE CRACK GROWTH AND THRESHOLD BEHAVIOUR IN AIR AND VACUUM OF COMMERCIAL ALUMINIUM ALLOYS , 1979 .

[97]  Paul A. Wawrzynek,et al.  FRANC2D: A two-dimensional crack propagation simulator. Version 2.7: User's guide , 1994 .

[98]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[99]  Yu,et al.  Mixed-mode crack surface interference under cyclic shear loads , 2000 .

[100]  A. Cottrell,et al.  The spread of plastic yield from a notch , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[101]  C. Beevers Fatigue crack growth characteristics at low stress intensities of metals and alloys , 1977 .

[102]  P. Liaw,et al.  Influence of gaseous environments on rates of near-threshold fatigue crack propagation in nicrmov steel , 1982 .

[103]  K. Ravichandran Further results on “A theoretical model for roughness induced crack closure”; Effect of yield strength and grain size , 1990 .

[104]  G. Irwin ANALYSIS OF STRESS AND STRAINS NEAR THE END OF A CRACK TRAVERSING A PLATE , 1957 .

[105]  A. P. Green Friction between unlubricated metals: a theoretical analysis of the junction model , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[106]  A. Hartman On the effect of oxygen and water vapor on the propagation of fatigue cracks in 2024-T3 alclad sheet , 1965 .

[107]  J. Ruppen,et al.  THE EFFECT OF ENVIRONMENT ON CRACK CLOSURE AND FATIGUE THRESHOLD , 1983 .

[108]  Arthur J. McEvily,et al.  Fatigue fracture-surface roughness and the K-opening level , 1997 .

[109]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[110]  C. Beevers,et al.  A multiple asperity fatigue crack closure model , 1984 .

[111]  Leon M Keer,et al.  Dislocation based fracture mechanics , 1996 .

[112]  Subra Suresh,et al.  Some considerations on the modelling of oxide-induced fatigue crack closure using solutions for a rigid wedge inside a linear elastic crack , 1983 .

[113]  Uchida,et al.  Fatigue striation formation in an Fe-3%Si alloy - effects of crystallographic orientation and neighbouring grains , 1999 .

[114]  Shaker A. Meguid,et al.  A comparison between analytical and finite element analysis of main crack-microcrack interaction , 1991 .

[115]  A. Wilkinson,et al.  A dislocation model for the two critical stress intensities required for threshold fatigue crack propagation , 1996 .

[116]  J. Lankford,et al.  Small fatigue cracks : proceedings of the Second Engineering Foundation International Conference/Workshop, Santa Barbara, California, January 5-10, 1986 , 1986 .

[117]  M. Lang,et al.  Explanation of an apparent abnormality in fatigue crack growth rate curves in titanium alloys , 1999 .

[118]  J. M. Larsen,et al.  Investigation of an abnormality in fatigue crack growth curves-the Marci effect , 1998 .

[119]  D. Lloyd Deformation of fine-grained aluminium alloys , 1980 .

[120]  J.C.M. Li,et al.  Edge dislocations emitted along multiple inclined slip planes from a Mode I crack. II. Simultaneous emission , 1996 .

[121]  M. Haynes,et al.  Temperature-dependent void-sheet fracture in Al-Cu-Mg-Ag-Zr , 1998 .

[122]  S. Suresh Fatigue of materials , 1991 .

[123]  F. Bradshaw,et al.  The influence of gaseous environment and fatigue frequency on the growth of fatigue cracks in some aluminum alloys , 1969 .

[124]  Anthony W. Thompson,et al.  Roughness-Induced Crack Closure: An Explanation for Microstructurally Sensitive Fatigue Crack Growth , 1983 .

[125]  P. C. Paris,et al.  Threshold for Fatigue Crack Propagation and the Effects of Load Ratio and Frequency , 1973 .

[126]  Robert P. Wei,et al.  Some aspects of environment-enhanced fatigue-crack growth , 1970 .

[127]  K. Ravichandran A theoretical model for roughness induced crack closure , 1990 .

[128]  M. Haynes,et al.  Localized deformation and elevated-temperature fracture of submicron-grain aluminum with dispersoids , 1995 .

[129]  M. Loretto Electron Beam Analysis of Materials , 1984 .

[130]  T. Gross,et al.  Fracture surface interference in shear—I. A model based on experimental surface characterizations , 1995 .

[131]  B. M. Hillberry,et al.  Effects of constituent particle clusters on fatigue behavior of 2024-T3 aluminum alloy , 1998 .

[132]  H. Shodja,et al.  The double slip plane model for the study of short cracks , 1995 .

[133]  James C. Newman,et al.  THE EXTENDED COMPACT TENSION SPECIMEN , 1997 .

[134]  Michael C. Montpetit,et al.  Metallography of fatigue crack initiation in an overaged high-strength aluminum alloy , 1983 .