The Matrix Cookbook
暂无分享,去创建一个
[1] A. R. Curtis,et al. Standard Mathematical Tables , 1971, The Mathematical Gazette.
[2] J. Meyer. Generalized Inversion of Modified Matrices , 1973 .
[3] S. R. Searle,et al. Matrix Algebra Useful for Statistics , 1982 .
[4] B. A. D. H. Brandwood. A complex gradient operator and its applica-tion in adaptive array theory , 1983 .
[5] Gene H. Golub,et al. Matrix computations , 1983 .
[6] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[7] Kelvin Thompson,et al. Matrix identities , 1990 .
[8] Stephen A. Dyer,et al. Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..
[9] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[10] Steve Rogers,et al. Adaptive Filter Theory , 1996 .
[11] Lucas C. Parra,et al. Convolutive blind separation of non-stationary sources , 2000, IEEE Trans. Speech Audio Process..
[12] T. Minka. Old and New Matrix Algebra Useful for Statistics , 2000 .
[13] Robert Bregovic,et al. Multirate Systems and Filter Banks , 2002 .
[14] Terrence J. Sejnowski,et al. Complex Independent Component Analysis of Frequency-Domain Electroencephalographic Data , 2003, Neural Networks.
[15] D. Mortari. Ortho-Skew and Ortho-Sym Matrix Trigonometry 1,2 , 2004 .
[16] Robert M. Gray,et al. Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.
[17] Kaare Brandt Petersen,et al. Generative and Filtering Approaches for Overcomplete Representations , 2005 .
[18] Abel M. Rodrigues. Matrix Algebra Useful for Statistics , 2007 .
[19] Zhaoshui He,et al. Convolutive Blind Source Separation in the Frequency Domain Based on Sparse Representation , 2007, IEEE Transactions on Audio, Speech, and Language Processing.