Hydrogen bonding in the infinite hydrogen fluoride and hydrogen chloride chains

Hydrogen bonding in infinite HF and HCl bent (zigzag) chains is studied using the ab initio coupled-cluster singles and doubles (CCSD) correlation method. The correlation contribution to the binding energy is decomposed in terms of nonadditive many-body interactions between the monomers in the chains, the so-called energy increments. Van der Waals constants for the two-body dispersion interaction between distant monomers in the infinite chains are extracted from this decomposition. They allow a partitioning of the correlation contribution to the binding energy into short- and long-range terms. This finding affords a significant reduction in the computational effort of ab initio calculations for solids as only the short-range part requires a sophisticated treatment whereas the long-range part can be summed immediately to infinite distances.

[1]  Hermann Stoll,et al.  The correlation energy of crystalline silicon , 1992 .

[2]  Stoll,et al.  Correlation energy of diamond. , 1992, Physical review. B, Condensed matter.

[3]  So Hirata,et al.  Coupled-cluster singles and doubles for extended systems. , 2004, The Journal of chemical physics.

[4]  S. P. Habuda,et al.  Nuclear magnetic resonance data on proton positions in solid HF , 1971 .

[5]  R. Farrow,et al.  Crystal Structure of Solid Hydrogen Chloride and Deuterium Chloride , 1967, Nature.

[6]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[7]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[8]  Springborg First-principles examination of hydrogen bonds: Polymeric hydrogen fluoride. , 1987, Physical review letters.

[9]  A. Karpfen Ab initio studies on hydrogen bonded chains. I. Equilibrium geometry of the infinite, linear chain of hydrogen fluoride molecules , 1980 .

[10]  Trygve Helgaker,et al.  Basis set convergence of the interaction energy of hydrogen-bonded complexes , 1999 .

[11]  T. Thirunamachandran,et al.  Molecular Quantum Electrodynamics , 1984 .

[12]  E. Arzi,et al.  The crystal structure of deuterium fluoride , 1975 .

[13]  M. Kertész,et al.  Ab initio crystal orbital treatment of hydrogen fluoride (HF) chains , 1975 .

[14]  A. Blumen,et al.  Electronic band structure of ferroelectric HCI , 1977 .

[15]  Alex Zunger,et al.  Band structure, crystal conformation, and hydrogen bond potentials for solid HF , 1975 .

[16]  P. Schuster,et al.  Ab initio studies on infinite linear hydrogen fluoride chains , 1976 .

[17]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[18]  Cohesive properties of alkali halides , 1997, cond-mat/9707218.

[19]  GROUND-STATE PROPERTIES OF HEAVY ALKALI HALIDES , 1998, cond-mat/9801031.

[20]  Beate Paulus,et al.  Ab initio coupled-cluster calculations for the fcc and hcp structures of rare-gas solids , 2000 .

[21]  C. Aakeröy Hydrogen-Bonding in Solids , 1999 .

[22]  M. Dolg,et al.  Ab initio treatment of electron correlations in polymers: lithium hydride chain and beryllium hydride polymer , 2000, cond-mat/0002124.

[23]  R. Farrow,et al.  Neutron diffraction study of molecular motion in solid deuterium chloride , 1969 .

[24]  A. Blumen,et al.  Energy band calculations on helical systems , 1977 .

[25]  H. Stoll On the correlation energy of graphite , 1992 .

[26]  Doll,et al.  Correlation effects in ionic crystals: The cohesive energy of MgO. , 1995, Physical review. B, Condensed matter.

[27]  E. Steinborn,et al.  Binding energy analysis of solid hydrogen fluoride , 1986 .

[28]  Beate Paulus,et al.  Ab initio calculation of ground-state properties of rare-gas crystals. , 1999 .

[29]  A. Karpfen Cooperative Effects in Hydrogen Bonding , 2003 .

[30]  W. Förner Formulation of the coupled cluster theory with localized orbitals in correlation calculations on polymers , 1992 .

[31]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[32]  M. Dolg,et al.  An incremental approach for correlation contributions to the structural and cohesive properties of polymers. Coupled-cluster study of trans-polyacetylene , 1997 .

[33]  Ashok Kumar,et al.  Pseudo-spectral dipole oscillator strengths and dipole-dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He, Ne, Ar, Kr and Xe , 1985 .

[34]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[35]  H. M. Evjen On the Stability of Certain Heteropolar Crystals , 1932 .

[36]  Basis set convergence in extended systems: infinite hydrogen fluoride and hydrogen chloride chains , 2004, cond-mat/0408243.

[37]  K. Fink,et al.  Ab initio calculations of van der Waals interactions in one‐ and two‐dimensional infinite periodic systems , 1995 .

[38]  P. Fulde Wavefunction methods in electronic-structure theory of solids , 2002 .

[39]  C. K. Ingold The Nature of the Chemical Bond and the Structure of Molecules and Crystals , 1940, Nature.

[40]  Springborg Energy surfaces and electronic properties of hydrogen fluoride. , 1988, Physical review. B, Condensed matter.

[41]  W. Lipscomb,et al.  The crystal structure of hydrogen fluoride , 1954 .

[42]  A. Blumen,et al.  Comparative calculations on ferroelectric HCl and HF , 1976 .

[43]  B. Champagne,et al.  Long-range effects in optimizing the geometry of stereoregular polymers. II. Hydrogen fluoride chains as a working example , 1999 .

[44]  Y. I'haya,et al.  Ab initio crystal orbital calculations on (CH)n and (HF)n with extended basis sets , 1984 .

[45]  Steve Scheiner,et al.  Hydrogen Bonding: A Theoretical Perspective , 1997 .

[46]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[47]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[48]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .

[49]  So Hirata,et al.  Ab Initio Hartree-Fock and Density Functional Studies on the Structures and Vibrations of an Infinite Hydrogen Fluoride Polymer , 1998 .

[50]  R. Farrow,et al.  Crystal Structure of Cubic Deuterium Chloride , 1967, Nature.

[51]  Edward Teller,et al.  Interaction of the van der Waals Type Between Three Atoms , 1943 .

[52]  J. Ladik Polymers as solids: a quantum mechanical treatment , 1999 .

[53]  U. Birkenheuer,et al.  Quantum chemical ab initio calculations of correlation effects in complex polymers: poly(para-phenylene). , 2004, The Journal of chemical physics.

[54]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[55]  I. Panas On the solid state of hydrogen fluoride: A self-consistent crystal field study , 1993 .

[56]  S. Suhai,et al.  The chemical Hamiltonian approach for infinite chains , 1997 .

[57]  C. Pisani Local techniques for the ab initio quantum-mechanical description of the chemical properties of crystalline materials , 2003 .

[58]  A. Beyer,et al.  AB initio studies on hydrogen bonded chains. II. Equilibrium geometry and vibrational spectra of the bent chain of hydrogen fluoride molecules , 1982 .

[59]  P. Schuster,et al.  Hydrogen bonding in clusters and molecular crystals , 1981 .

[60]  Słlawomir Berski,et al.  PERIODIC HARTREE-FOCK STUDY OF (HF) CHAIN , 1997 .

[61]  Z. Latajka,et al.  On the difference between hydrogen fluoride and hydrogen chloride crystals , 1998 .