On a fractional Schrödinger equation with periodic potential

Abstract In this paper, we first consider the spectrum of the fractional Schrodinger operator ( − Δ ) s + V ( x ) on R N , where s ∈ ( 0 , 1 ) and V ( x ) be continuous, periodic in x . Using a new nonlocal normal derivative, we prove that the operator has purely continuous spectrum which is bounded below and consists of closed disjoint intervals. Then when 0 belongs to a spectral gap of ( − Δ ) s + V ( x ) , we establish an existence result for the fractional Schrodinger equation via a new linking theorem. It is worth to mention that the nonlinear term in our problem does not satisfy the periodicity and the existence result is even new for the case s = 1 .

[1]  Luis Silvestre,et al.  Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian , 2007, math/0702392.

[2]  A. Pankov,et al.  Introduction to Spectral Theory of Schrödinger Operators , 2001 .

[3]  Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well , 2016 .

[4]  Yang Yang,et al.  On fractional Schrödinger equation in RN with critical growth , 2013 .

[5]  M. Schechter Nonlinear Schrödinger operators with zero in the spectrum , 2015 .

[6]  Yanheng Ding,et al.  Bound states of nonlinear Schrödinger equations with magnetic fields , 2011 .

[7]  Dušan D. Repovš,et al.  Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials , 2016, 1701.02101.

[8]  Jihui Zhang,et al.  Ground states for fractional Schrödinger equations with critical growth , 2014 .

[9]  Andrzej Szulkin,et al.  Generalized linking theorem with an application to a semilinear Schrödinger equation , 1998, Advances in Differential Equations.

[10]  Reinaldo de Marchi,et al.  Asymptotically periodic superquadratic Hamiltonian systems , 2016 .

[11]  Elves A. B. Silva,et al.  Quasilinear asymptotically periodic elliptic equations with critical growth , 2009 .

[12]  YanYan Li,et al.  Existence of solutions for semilinear elliptic equations with indefinite linear part , 1992 .

[13]  Luis Silvestre,et al.  Regularity of the obstacle problem for a fractional power of the laplace operator , 2007 .

[14]  A. Quaas,et al.  Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[15]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[16]  Jean-Michel Roquejoffre,et al.  Variational problems with free boundaries for the fractional Laplacian , 2010 .

[17]  Ming Cheng,et al.  Bound state for the fractional Schrödinger equation with unbounded potential , 2012 .

[18]  Wenming Zou,et al.  On a Schrodinger equation with periodic potential and spectrum point zero , 2003 .

[19]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  S. Secchi Ground state solutions for nonlinear fractional Schrödinger equations in RN , 2012, 1208.2545.

[21]  Minbo Yang,et al.  Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities , 2010 .

[22]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[23]  Yanheng Ding,et al.  Variational Methods for Strongly Indefinite Problems , 2007, Interdisciplinary Mathematical Sciences.

[24]  L. Jeanjean Solutions in Spectral Gaps for a Nonlinear Equation of Schrödinger Type , 1994 .

[25]  S. Chang,et al.  Fractional Laplacian in conformal geometry , 2010, 1003.0398.

[26]  Yanheng Ding,et al.  On a nonlinear Schrödinger equation with periodic potential , 1999 .

[27]  Paul H. Rabinowitz,et al.  Homoclinic type solutions for a semilinear elliptic PDE on ℝn , 1992 .

[28]  D. Applebaum Lévy Processes—From Probability to Finance and Quantum Groups , 2004 .

[29]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[30]  Juncheng Wei,et al.  Concentrating standing waves for the fractional nonlinear Schr\"odinger equation , 2013, 1307.2301.

[31]  Xianhua Tang,et al.  New Super-quadratic Conditions on Ground State Solutions for Superlinear Schrödinger Equation , 2014 .

[32]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[33]  Yanyan Li,et al.  On multibump' bound states for certain semilinear elliptic equations , 1992 .

[34]  Martin Schechter,et al.  WEAK LINKING THEOREMS AND SCHR¨ ODINGER EQUATIONS WITH CRITICAL SOBOLEV EXPONENT , 2003 .

[35]  Tobias Weth,et al.  Ground state solutions for some indefinite variational problems , 2009 .

[36]  Xavier Ros-Oton,et al.  Nonlocal problems with Neumann boundary conditions , 2014, 1407.3313.

[37]  M. Willem,et al.  Nontrivial solution of a semilinear Schrodinger equation , 1996 .

[38]  F. Lin,et al.  Solutions of perturbed Schrödinger equations with critical nonlinearity , 2007 .