PolyCO in XRF analysis: Fundamental Parameter Method applied for Japanese Buddhist scroll studies
暂无分享,去创建一个
D. Hampai | G. Cappuccio | M. Martini | V. Guglielmotti | C. Mazzuca | S.B. Dabagov | L. Micheli | M. Redi | M. Martini | L. Micheli | D. Hampai | S. Dabagov | C. Mazzuca | V. Guglielmotti | G. Cappuccio | M. Redi
[1] Kazuhiko Nakano,et al. Development of confocal micro X-ray fluorescence instrument using two X-ray beams , 2007 .
[2] James E. Penner-Hahn,et al. Handbook of X-ray Spectrometry, 2nd ed., Revised and Expanded Edited by René E. Van Grieken (University of Antwerp) and Andrzej A. Markowicz (Vienna, Austria). Marcel Dekker, Inc: New York and Basel. 2002. xvi + 984 pp. $250.00. ISBN 0-8247-0600-5. , 2002 .
[3] Dariush Hampai,et al. Laboratory total reflection X-ray fluorescence analysis for low concentration samples ☆ , 2014 .
[4] C. Mazzuca,et al. Application of polycapillary optics to x-ray fluorescence for advanced spectroscopy and microscopy studies , 2020, Optical Engineering + Applications.
[5] C. Streli,et al. Improved micro x-ray fluorescence spectrometer for light element analysis. , 2010, The Review of scientific instruments.
[6] M. Krause,et al. Atomic radiative and radiationless yields for K and L shells , 1979 .
[7] B. Kanngießer,et al. Quantification for 3D micro X-ray fluorescence , 2012 .
[8] Alexandre Simionovici,et al. A library for X-ray-matter interaction cross sections for X-ray fluorescence applications , 2004 .
[9] Johann Wernisch,et al. Least‐squares fits of fundamental parameters for quantitative x‐ray analysis as a function of Z (11 ≤ Z ≤ 83) and E (1 keV ≤ E ≤ 50 keV) , 1985 .
[10] I. Szalóki,et al. A novel confocal XRF-Raman spectrometer and FPM model for analysis of solid objects and liquid substances , 2019, Journal of Analytical Atomic Spectrometry.
[11] A. Wims,et al. Relative intensity factors for K, L and M shell x‐ray lines , 1982 .
[12] Bruno Golosio,et al. The xraylib library for X-ray-matter interactions. Recent developments , 2011 .
[13] Andrzej A. Markowicz,et al. Handbook of X-Ray Spectrometry , 2002 .
[14] Dariush Hampai,et al. Experimental study for the feasibility of using hard x-rays for micro-XRF analysis of multilayered metals , 2014 .
[15] M. A. Kumakhov,et al. Multiple reflection from surface X-ray optics , 1990 .
[16] V. A. Solé,et al. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra , 2007 .
[17] Dariush Hampai,et al. Polycapillary based μXRF station for 3D colour tomography , 2018 .
[18] Dariush Hampai,et al. 2D-3D μXRF elemental mapping of archeological samples , 2017 .
[19] Sultan B. Dabagov,et al. REVIEWS OF TOPICAL PROBLEMS: Channeling of neutral particles in micro- and nanocapillaries , 2003 .
[20] S. Dabagov,et al. Advanced channeling technologies for X-ray applications , 2019, Radiation Physics and Chemistry.
[21] C. Streli,et al. Confocal micro-x-ray fluorescence spectrometer for light element analysis. , 2012, The Review of scientific instruments.
[22] D. Hampai,et al. Elemental mapping and microimaging by x-ray capillary optics. , 2008, Optics letters.
[23] S. Miura,et al. Nondestructive analysis of a painting, a national treasure in Japan , 2007, Powder Diffraction.
[24] K. Nakano,et al. Development of a new total reflection X‐ray fluorescence instrument using polycapillary X‐ray lens , 2006 .
[25] F. Claisse,et al. Quantitative X-Ray Fluorescence Analysis: Theory and Application , 1995 .
[26] Tom Schoonjans,et al. A general Monte Carlo simulation of energy-dispersive X-ray fluorescence spectrometers — Part 6. Quantification through iterative simulations , 2013 .
[27] John Winter. PAINTS AND SUPPORTS IN FAR EASTERN PICTORIAL ART , 1985 .
[28] F. Brenker,et al. Fundamental parameter based quantification algorithm for confocal nano-X-ray fluorescence analysis , 2012 .
[29] Ron Jenkins,et al. X-ray fluorescence spectrometry , 1999 .
[30] A. Marcelli,et al. Challenging X-ray Fluorescence Applications for Environmental Studies at XLab Frascati , 2018, Condensed Matter.