High-speed OCT light sources and systems [Invited].

Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.

[1]  J. Fujimoto,et al.  Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. , 2005, Optics express.

[2]  V. Jayaraman,et al.  High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range. , 2012, Electronics letters.

[3]  Zhuolin Liu,et al.  Adaptive optics optical coherence tomography at 1 MHz. , 2014, Biomedical optics express.

[4]  J. Fujimoto,et al.  Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers. , 2007, Optics letters.

[5]  S. Yun,et al.  In vivo optical frequency domain imaging of human retina and choroid. , 2006, Optics express.

[6]  A. Kampik,et al.  Multi-MHz retinal OCT. , 2013, Biomedical optics express.

[7]  W. Drexler,et al.  Line-field parallel swept source MHz OCT for structural and functional retinal imaging. , 2015, Biomedical optics express.

[8]  C. Chang-Hasnain,et al.  High performance micromechanical tunable verticle cavity surface emitting laser , 1996 .

[9]  Martin F. Kraus,et al.  Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology , 2013, Photonics West - Biomedical Optics.

[10]  Jannick P Rolland,et al.  Estimation of longitudinal resolution in optical coherence imaging. , 2002, Applied optics.

[11]  Charles Howard Henry,et al.  Quantum noise in photonics , 1996 .

[12]  N. Munce,et al.  High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography. , 2009, Optics letters.

[13]  Hiroshi Mashimo,et al.  Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography. , 2004, Optics express.

[14]  Daniel X Hammer,et al.  Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array. , 2008, The Review of scientific instruments.

[15]  R. Huber,et al.  Wavelength swept amplified spontaneous emission source. , 2009, Optics express.

[16]  T. Yatagai,et al.  High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography. , 2007, Optics express.

[17]  Hermann A. Haus,et al.  Raman response function of silica-core fibers , 1989, Annual Meeting Optical Society of America.

[18]  T. Yatagai,et al.  Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. , 2005, Optics express.

[19]  Jeehyun Kim,et al.  Optical coherence tomography for advanced screening in the primary care office , 2014, Journal of biophotonics.

[20]  Kohji Ohbayashi,et al.  Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second , 2012, Biomedical optics express.

[21]  Peter Koch,et al.  Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT. , 2012, Optics express.

[22]  Masahiro Ueno,et al.  200 kHz swept light source equipped with KTN deflector for optical coherence tomography , 2012 .

[23]  J. Fujimoto,et al.  Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. , 2008, Optics express.

[24]  Benjamin J Vakoc,et al.  Performance of reduced bit-depth acquisition for optical frequency domain imaging. , 2009, Optics express.

[25]  Martin Villiger,et al.  All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging. , 2014, Optics express.

[26]  B. Vakoc,et al.  >400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging. , 2010, Optics letters.

[27]  J. Andrews Electronically tunable single-mode external-cavity diode laser. , 1991, Optics letters.

[28]  James G. Fujimoto,et al.  Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns , 2012, Biomedical optics express.

[29]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[30]  Wavelength-swept spectral and pulse shaping utilizing hybrid Fourier domain modelocking by fiber optical parametric and erbium-doped fiber amplifiers. , 2010, Optics express.

[31]  Anthony N Kuo,et al.  Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT , 2016, Biomedical optics express.

[32]  Toyohiko Yatagai,et al.  Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation. , 2006, Journal of biomedical optics.

[33]  Shibin Jiang,et al.  All-fiber wavelength-swept laser near 2 μm. , 2011, Optics letters.

[35]  Martin F. Kraus,et al.  Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. , 2013, Biomedical optics express.

[36]  B. Sumpf,et al.  Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier. , 2010, Optics express.

[37]  Christian Jirauschek,et al.  Modeling and analysis of polarization effects in Fourier domain mode-locked lasers. , 2015, Optics letters.

[38]  Joseph A. Izatt,et al.  Full-field swept-source phase microscopy , 2006 .

[39]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[40]  J. Izatt,et al.  Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. , 2005, Journal of biomedical optics.

[41]  K. Ohbayashi,et al.  Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s. , 2008, Optics letters.

[42]  D. D. de Bruin,et al.  Spectrally balanced detection for optical frequency domain imaging. , 2007, Optics express.

[43]  B. Kim,et al.  Broad-spectrum, wavelength-swept, erbium-doped fiber laser at 1.55 microm. , 1990, Optics letters.

[44]  A. Podoleanu Unbalanced versus balanced operation in an optical coherence tomography system. , 2000, Applied optics.

[45]  Wolfgang Wieser,et al.  Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. , 2010, Optics express.

[46]  W. Drexler,et al.  Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. , 2009, Optics express.

[47]  Iwona Gorczynska,et al.  Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. , 2008, Investigative ophthalmology & visual science.

[48]  Bart Johnson,et al.  SNR of swept SLEDs and swept lasers for OCT. , 2016, Optics express.

[49]  J. Fujimoto,et al.  Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. , 1997, Optics letters.

[50]  J. Fujimoto,et al.  Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. , 2006, Optics express.

[51]  Eva Lankenau,et al.  Optimising deep anterior lamellar keratoplasty (DALK) using intraoperative online optical coherence tomography (iOCT) , 2014, British Journal of Ophthalmology.

[52]  Kirill V. Larin,et al.  Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography. , 2015, Optics letters.

[53]  Wolfgang Wieser,et al.  High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s. , 2014, Biomedical optics express.

[54]  K. Goda,et al.  High-throughput optical coherence tomography at 800 nm. , 2012, Optics express.

[55]  S. Sanders,et al.  Multiwavelength Frequency-Division-Multiplexed Light Source Based on Dispersion-Mode-Locking , 2007, IEEE Photonics Technology Letters.

[56]  Atsushi Morosawa,et al.  Large coherence length swept source for axial length measurement of the eye. , 2009, Applied optics.

[57]  Joseph A. Izatt,et al.  Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival , 2012, Biomedical optics express.

[58]  R. Huber,et al.  Dispersion, coherence and noise of Fourier domain mode locked lasers. , 2009, Optics express.

[59]  J. D. de Boer,et al.  Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging. , 2009, Journal of biomedical optics.

[60]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.

[61]  J. Fujimoto,et al.  High-speed phase- and group-delay scanning with a grating-based phase control delay line. , 1997, Optics letters.

[62]  Qin Huang,et al.  Ultrahigh speed endoscopic optical coherence tomography for gastroenterology. , 2014, Biomedical optics express.

[63]  Audrey K. Ellerbee,et al.  Rapid scanning catheterscope for expanded forward-view volumetric imaging with optical coherence tomography. , 2015, Optics letters.

[64]  L. F. Tiemeijer,et al.  Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers , 1994 .

[65]  G. K. Samanta,et al.  Self-healing highly-chirped fiber laser at 1.0 μm. , 2016, Optics express.

[66]  Chi Zhang,et al.  High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch. , 2015, Biomedical optics express.

[67]  C. Jirauschek,et al.  A theoretical description of Fourier domain mode locked lasers. , 2009, Optics express.

[68]  Ruikang K. Wang,et al.  Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity , 2016, Scientific Reports.

[69]  S. Yamashita,et al.  Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning. , 2006, Optics Express.

[70]  Chi Zhang,et al.  Breathing laser as an inertia-free swept source for high-quality ultrafast optical bioimaging. , 2014, Optics letters.

[71]  Christian Jirauschek,et al.  Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers. , 2015, Biomedical optics express.

[72]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[73]  Joseph A. Izatt,et al.  Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch , 2012, Biomedical optics express.

[74]  Janarthanan Rasakanthan,et al.  Space-division Multiplexing Optical Coherence Tomography References and Links Multi-channel Fourier Domain Oct System with Superior Lateral Resolution for Biomedical Applications, " , 2022 .

[75]  Heinz Wörn,et al.  Optical Coherence Tomography Guided Laser Cochleostomy: Towards the Accuracy on Tens of Micrometer Scale , 2014, BioMed research international.

[76]  C. Jirauschek,et al.  Instantaneous lineshape analysis of Fourier domain mode-locked lasers. , 2011, Optics express.

[77]  B E Bouma,et al.  Rapid acquisition of in vivo biological images by use of optical coherence tomography. , 1996, Optics letters.

[78]  D. Adler,et al.  Extended coherence length megahertz FDML and its application for anterior segment imaging , 2012, Biomedical optics express.

[79]  P. C. Chui,et al.  Wideband Raman-Pumped Wavelength-Swept Laser for Optical Coherence Tomography Application , 2013 .

[80]  Kate Sugden,et al.  Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit. , 2011, Journal of biomedical optics.

[81]  M. Wojtkowski,et al.  Dynamics of a short cavity swept source OCT laser. , 2014, Optics express.

[82]  Harald Sattmann,et al.  A thermal light source technique for optical coherence tomography , 2000 .

[83]  Brett E Bouma,et al.  Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography. , 2007, Optics express.

[84]  S. Sanders,et al.  Modeless operation of a wavelength-agile laser by high-speed cavity length changes. , 2005, Optics express.

[85]  D. Hanna,et al.  Ytterbium-doped fiber amplifiers , 1997 .

[86]  Y H Ja Optical vernier filter with fiber grating Fabry-Perot resonators. , 1995, Applied optics.

[87]  Chen D. Lu,et al.  Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers , 2012, Biomedical optics express.

[88]  I. Walmsley,et al.  Characterization of ultrashort electromagnetic pulses , 2009 .

[89]  Maciej Wojtkowski,et al.  High-speed optical coherence tomography: basics and applications. , 2010, Applied optics.

[90]  Tsung-Han Tsai,et al.  Frequency comb swept lasers. , 2009, Optics express.

[91]  Freddy T. Nguyen,et al.  Optical coherence tomography: a review of clinical development from bench to bedside. , 2007, Journal of biomedical optics.

[92]  Angelika Unterhuber,et al.  Optical coherence tomography today: speed, contrast, and multimodality , 2014, Journal of biomedical optics.

[93]  J. Fujimoto,et al.  Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. , 2006, Optics letters.

[94]  Michael W. Jenkins,et al.  Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser. , 2007, Optics express.

[95]  S. Yun,et al.  115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. , 2005, Optics letters.

[96]  A. Morosawa,et al.  Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source. , 2008, Optics express.

[97]  Kang Zhang,et al.  Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT , 2010, Optics express.

[98]  R. Huber,et al.  Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm , 2011, Journal of biophotonics.

[99]  Adrien E. Desjardins,et al.  Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging , 2009, IEEE Transactions on Medical Imaging.

[100]  R. Huber,et al.  Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers. , 2010, Optics letters.

[101]  Angelika Unterhuber,et al.  Full-field time-encoded frequency-domain optical coherence tomography. , 2006, Optics express.

[102]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[103]  C. Jirauschek,et al.  Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers , 2013, Nature Communications.

[104]  A Rollins,et al.  In vivo video rate optical coherence tomography. , 1998, Optics express.

[105]  Peter Koch,et al.  Holoscopy: holographic optical coherence tomography , 2011, European Conference on Biomedical Optics.

[106]  Xiaocong Yuan,et al.  Megahertz streak-mode Fourier domain optical coherence tomography. , 2011, Journal of biomedical optics.

[107]  Wolfgang Wieser,et al.  Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation. , 2008, Optics letters.

[108]  S. Yun,et al.  High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. , 2003, Optics letters.

[109]  Adrian Bradu,et al.  Master slave en-face OCT/SLO. , 2015, Biomedical optics express.

[110]  Reginald Birngruber,et al.  Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery. , 2005, Archives of ophthalmology.

[111]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[112]  R. Leonhardt,et al.  Nonlinear optical frequency conversion of an amplified Fourier Domain Mode Locked (FDML) laser. , 2009, Optics express.

[113]  Michael Pircher,et al.  Active-passive path-length encoded (APPLE) Doppler OCT. , 2016, Biomedical optics express.

[114]  Ruikang K. Wang,et al.  Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source. , 2016, Biomedical optics express.

[115]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[116]  Alexander W. Schill,et al.  Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second. , 2015, Optics letters.

[117]  Zhongping Chen,et al.  High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs. , 2008 .

[118]  B Kelleher,et al.  Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers. , 2015, Optics letters.

[119]  J. Izatt,et al.  Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. , 2008, Journal of biomedical optics.

[120]  R. Leitgeb,et al.  Ultrahigh-speed non-invasive widefield angiography. , 2012, Journal of biomedical optics.

[121]  Yuuki Watanabe,et al.  Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit. , 2009, Journal of biomedical optics.

[122]  Eva Lankenau,et al.  Optical coherence tomography with online visualization of more than seven rendered volumes per second. , 2010, Journal of biomedical optics.

[123]  R. Huber,et al.  Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT , 2013, Biomedical optics express.

[124]  Jin U. Kang,et al.  Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography , 2013, Journal of biomedical optics.

[125]  Brett E. Bouma,et al.  Optical Coherence Tomography , 2013 .

[126]  Peter Koch,et al.  In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s. , 2010, Optics letters.

[127]  W. Drexler,et al.  Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length. , 2014, Optics express.

[128]  J. Duker,et al.  Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. , 2010, Optics express.

[129]  S. Slepneva,et al.  Dynamics of Fourier Domain Mode Locked lasers , 2013, CLEO: 2013.

[130]  Wolfgang Wieser,et al.  A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy , 2014, Nature Communications.

[131]  R. Huber,et al.  K-space linear Fourier domain mode locked laser and applications for optical coherence tomography. , 2008, Optics express.

[132]  Hee Yoon Lee,et al.  Scalable multiplexing for parallel imaging with interleaved optical coherence tomography. , 2014, Biomedical optics express.

[133]  Robert J Zawadzki,et al.  New Directions in Ophthalmic Optical Coherence Tomography , 2012, Optometry and vision science : official publication of the American Academy of Optometry.

[134]  Steven M. Jones,et al.  Adaptive-optics optical coherence tomography for high-resolution and high-speed 3 D retinal in vivo imaging , 2005 .

[135]  J. Fujimoto,et al.  High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source. , 2013, Optics letters.

[136]  R. Huber,et al.  Recent developments in Fourier Domain Mode Locked lasers for optical coherence tomography: Imaging at 1310 nm vs. 1550 nm wavelength , 2009, Journal of biophotonics.

[137]  S. Yun,et al.  Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications. , 2006, Optics letters.

[138]  Sina Farsiu,et al.  Coherence revival multiplexed, buffered swept source optical coherence tomography: 400 kHz imaging with a 100 kHz source. , 2014, Optics letters.

[139]  Chi Zhang,et al.  Performance of megahertz amplified optical time-stretch optical coherence tomography (AOT-OCT). , 2014, Optics express.

[140]  B E Bouma,et al.  Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera. , 2006, Optics express.

[141]  N. Olsson,et al.  Noise properties of a Raman amplifier , 1986 .

[142]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[143]  S A Boppart,et al.  High-resolution optical coherence tomography-guided laser ablation of surgical tissue. , 1999, The Journal of surgical research.

[144]  G. Hüttmann,et al.  In vivo optical imaging of physiological responses to photostimulation in human photoreceptors , 2016, Proceedings of the National Academy of Sciences.

[145]  Dug Young Kim,et al.  Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source. , 2006, Optics express.

[146]  P. Andersen,et al.  Swept wavelength source in the 1 microm range. , 2005, Optics express.

[147]  J. Bromage,et al.  Raman amplification for fiber communications systems , 2003, Journal of Lightwave Technology.

[148]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[149]  A. Boccara,et al.  High-resolution full-field optical coherence tomography with a Linnik microscope. , 2002, Applied optics.

[150]  Audrey K. Ellerbee,et al.  Interleaved optical coherence tomography. , 2013, Optics express.

[151]  Shinji Yamashita,et al.  High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG. , 2013, Optics express.

[152]  Joseph A Izatt,et al.  Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery. , 2010, Optics letters.

[153]  R. Huber,et al.  Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography. , 2008, Optics letters.

[154]  H Saint-Jalmes,et al.  Full-field optical coherence microscopy. , 1998, Optics letters.

[155]  Ruikang K. Wang,et al.  Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow , 2016, Journal of biomedical optics.

[156]  J. Fujimoto,et al.  High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy. , 2007, Optics express.

[157]  Gijs van Soest,et al.  Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography. , 2015, Biomedical optics express.

[158]  C. Tang,et al.  Very rapid tuning of cw dye laser , 1975 .

[159]  Armin Wolf,et al.  Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm. , 2015, Investigative ophthalmology & visual science.

[160]  R. Richards-Kortum,et al.  Spatially resolved spectral interferometry for determination of subsurface structure. , 1999, Optics letters.

[161]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[162]  B. Y. Kim,et al.  Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter , 1997 .

[163]  S. Farsiu,et al.  Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography , 2016, Scientific Reports.

[164]  Iwona Gorczynska,et al.  Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units , 2012, Journal of biomedical optics.

[165]  Gesa Franke,et al.  Aberration-free volumetric high-speed imaging of in vivo retina , 2016, Scientific Reports.

[166]  Benjamin J Vakoc,et al.  A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography. , 2014, Optics express.

[167]  J. Fujimoto,et al.  Cubic meter volume optical coherence tomography. , 2016, Optica.

[168]  Xingde Li,et al.  Self-starting, self-regulating Fourier domain mode locked fiber laser for OCT imaging , 2011, Biomedical optics express.

[169]  C. Jirauschek,et al.  Balance of physical effects causing stationary operation of Fourier domain mode-locked lasers , 2012 .

[170]  Susanne Binder,et al.  FEASIBILITY OF INTRASURGICAL SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY , 2011, Retina.

[171]  Chi Zhang,et al.  Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch. , 2014, Optics letters.

[172]  J. Fujimoto,et al.  Three-dimensional endomicroscopy using optical coherence tomography , 2007 .

[173]  Kevin Wong,et al.  Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering , 2013, Journal of biomedical optics.

[174]  Martin F. Kraus,et al.  Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT , 2011, Biomedical optics express.

[175]  R. Huber,et al.  Chromatic polarization effects of swept waveforms in FDML lasers and fiber spools. , 2012, Optics express.

[176]  R. Huber,et al.  Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. , 2011, Optics express.

[177]  J. Fujimoto,et al.  High-speed optical coherence domain reflectometry. , 1992, Optics letters.

[178]  Gesa Franke,et al.  Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography. , 2015, Optics letters.

[179]  Wibool Piyawattanametha,et al.  Two-axis MEMS Scanning Catheter for Ultrahigh Resolution Three-dimensional and En Face Imaging. , 2007, Optics express.

[180]  A.G. Podoleanu,et al.  Fiber Optics, From Sensing to Non Invasive High Resolution Medical Imaging , 2010, Journal of Lightwave Technology.

[181]  D. Adler,et al.  Extended coherence length Fourier domain mode locked lasers at 1310 nm. , 2011, Optics express.