KLASIFIKASI CITRA MENGGUNAKAN MULTI TEXTON HISTOGRAM DAN PROBABILISTIC NEURAL NETWORK

Pengelompokkan citra berdasarkan kategori yang sesuai sangat dibutuhkan dalam basis data citra.  Beberapa bidang ilmu yang membutuhkan basis data antara lain temu kembali citra, pengenalan  objek pada citra, image annotation, dan relavance feedback. Oleh karena itu penelitian ini  dikembangkan tentang klasifikasi citra menggunakan multi texton histogram dan probabilistic neural  network. Berdasarkan hasil uji coba, akurasi untuk data Batik mencapai nilai 92% dan data Brodatz mencapai 98%. Multi Texton Histogram dan Probabilistic Neural Network mampu mengklasifikasi  citra Brodatz dan Batik dengan efektif.

[1]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[2]  Nanik Suciati,et al.  Batik Image Retrieval Based on Color Difference Histogram and Gray Level Co-Occurrence Matrix , 2014 .

[3]  Ruli Manurung,et al.  Performance comparison analysis features extraction methods for Batik recognition , 2012, 2012 International Conference on Advanced Computer Science and Information Systems (ICACSIS).

[4]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[5]  Kar-Seng Loke,et al.  Efficient textile recognition via decomposition of co-occurrence matrices , 2009, 2009 IEEE International Conference on Signal and Image Processing Applications.

[6]  Lei Zhang,et al.  Contents lists available at ScienceDirect Pattern Recognition , 2022 .

[7]  Agus Eko Minarno,et al.  Image Retrieval Using Multi Texton Co- Occurrence Descriptor , 2014 .

[8]  Renata M. C. R. de Souza,et al.  Texture classification based on co-occurrence matrix and self-organizing map , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[9]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Marc C. Y. Cheong,et al.  An approach to texture-based image recognition by deconstructing multispectral co-occurrence matrices using Tchebichef orthogonal polynomials , 2008, 2008 19th International Conference on Pattern Recognition.