Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys.

[1]  Thomas Guenther,et al.  Pt-Al2O3 interfaces in cofired ceramics for use in miniaturized neuroprosthetic implants. , 2014, Journal of biomedical materials research. Part B, Applied biomaterials.

[2]  Ronald T. Leung,et al.  Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. , 2012, Biomaterials.

[3]  C. Artini,et al.  Diamond–metal interfaces in cutting tools: a review , 2012, Journal of Materials Science.

[4]  W. Mokwa,et al.  Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial , 2012, Eye.

[5]  Kate Fox,et al.  Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications , 2012, Journal of neural engineering.

[6]  Thomas Guenther,et al.  Bionic vision: system architectures – a review , 2012, Expert review of medical devices.

[7]  Joseph F. Rizzo,et al.  A Hermetic Wireless Subretinal Neurostimulator for Vision Prostheses , 2011, IEEE Transactions on Biomedical Engineering.

[8]  J. Rizzo Update on Retinal Prosthetic Research: The Boston Retinal Implant Project , 2011, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[9]  Gordon G Wallace,et al.  Biocompatibility of immobilized aligned carbon nanotubes. , 2011, Small.

[10]  M. Ameloot,et al.  Chinese hamster ovary cell viability on hydrogen and oxygen terminated nano‐ and microcrystalline diamond surfaces , 2009 .

[11]  Shun-Tian Lin,et al.  Interfacial Bonding Strength Between Brazing Alloys and CVD Diamond , 2009, Journal of Materials Engineering and Performance.

[12]  O. Auciello,et al.  Fundamentals of ultrananocrystalline diamond (UNCD) thin films as biomaterials for developmental biology: Embryonic fibroblasts growth on the surface of (UNCD) films , 2009 .

[13]  James D. Weiland,et al.  Visual Prosthesis , 2008, Proceedings of the IEEE.

[14]  Igor A. Lavrov,et al.  Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording , 2008 .

[15]  Rashid Bashir,et al.  Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications , 2007, Biomedical microdevices.

[16]  M. Singh,et al.  Brazing of Stainless Steel to Yttria-Stabilized Zirconia Using Gold-Based Brazes for Solid Oxide Fuel Cell Applications , 2007 .

[17]  U. E. Klotz,et al.  Nanocrystalline phases and epitaxial interface reactions during brazing of diamond grits with silver based Incusil-ABA alloy , 2006 .

[18]  James Weiland,et al.  In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[19]  G. Morscher,et al.  Active metal brazing and characterization of brazed joints in titanium to carbon–carbon composites , 2005 .

[20]  Tsu-Jae King,et al.  Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices , 2005, IEEE Transactions on Electron Devices.

[21]  Daryl R. Kipke,et al.  Wireless implantable microsystems: high-density electronic interfaces to the nervous system , 2004, Proceedings of the IEEE.

[22]  Sheng Huang,et al.  Effects of brazing route and brazing alloy on the interfacial structure between diamond and bonding matrix , 2004 .

[23]  U. E. Klotz,et al.  On the interfacial nanostructure of brazed diamond grits , 2004 .

[24]  J. Weiland,et al.  Retinal prosthesis for the blind. , 2002, Survey of ophthalmology.

[25]  C Baquey,et al.  Diamond: The Biomaterial of the 21st Century? , 1993, The International journal of artificial organs.

[26]  Tachibana,et al.  Correlation of the electrical properties of metal contacts on diamond films with the chemical nature of the metal-diamond interface. II. Titanium contacts: A carbide-forming metal. , 1992, Physical review. B, Condensed matter.

[27]  Hamish Meffin,et al.  In vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants. , 2016, Journal of biomedical materials research. Part B, Applied biomaterials.

[28]  Kate Fox,et al.  An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis. , 2014, Biomaterials.

[29]  Armand R. Tanguay,et al.  High-Density Feedthrough Technology for Hermetic Biomedical Micropackaging , 2013 .

[30]  Maurits Ortmanns,et al.  A 232-channel retinal vision prosthesis with a miniaturized hermetic package , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[31]  M. Ameloot,et al.  Chinese hamster ovary cell viability applications and on hydrogen and oxygen terminated nano- and microcrystalline diamond surfaces , 2009 .

[32]  H. Bender,et al.  Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers , 2001 .

[33]  L. Tang,et al.  Biocompatibility of chemical-vapour-deposited diamond. , 1995, Biomaterials.