Handling Handles: Nonplanar Integrability in N=4 Supersymmetric Yang-Mills Theory.

We propose an integrability setup for the computation of correlation functions of gauge-invariant operators in N=4 supersymmetric Yang-Mills theory at higher orders in the large N_{c} genus expansion and at any order in the 't Hooft coupling g_{YM}^{2}N_{c}. In this multistep proposal, one polygonizes the string world sheet in all possible ways, hexagonalizes all resulting polygons, and sprinkles mirror particles over all hexagon junctions to obtain the full correlator. We test our integrability-based conjecture against a nonplanar four-point correlator of large 1/2 Bogomol'nyi-Prasad-Sommerfield operators at one and two loops.

[1]  E. Witten Notes on super Riemann surfaces and their moduli , 2012, Pure and Applied Mathematics Quarterly.

[2]  E. Witten Notes on supermanifolds and integration , 2012, Pure and Applied Mathematics Quarterly.

[3]  P. Vieira,et al.  Handling handles. Part II. Stratification and data analysis , 2018, Journal of High Energy Physics.

[4]  Robie A. Hennigar,et al.  NUTs and bolts beyond Lovelock , 2018, Journal of High Energy Physics.

[5]  F. Aprile,et al.  Unmixing supergravity , 2018 .

[6]  L. Alday,et al.  Gravitational S-matrix from CFT dispersion relations , 2017, Journal of High Energy Physics.

[7]  B. Doyon,et al.  Conical twist fields and null polygonal Wilson loops , 2017, Nuclear Physics B.

[8]  S. Komatsu,et al.  Hexagonalization of correlation functions II: two-particle contributions , 2017, 1711.05327.

[9]  F. Aprile,et al.  Loop corrections for Kaluza-Klein AdS amplitudes , 2017 .

[10]  A. Sfondrini,et al.  Colour-dressed hexagon tessellations for correlation functions and non-planar corrections , 2017, 1710.10212.

[11]  L. Rastelli,et al.  How to succeed at holographic correlators without really trying , 2017, 1710.05923.

[12]  Minkyoo Kim,et al.  Structure constants of operators on the Wilson loop from integrability , 2017, 1706.02989.

[13]  F. Aprile,et al.  Quantum gravity from conformal field theory , 2017, 1706.02822.

[14]  L. Alday,et al.  Loop Corrections to Supergravity on AdS_{5}×S^{5}. , 2017, Physical review letters.

[15]  L. Rastelli,et al.  Mellin Amplitudes for Supergravity on AdS_{5}×S^{5}. , 2017, Physical review letters.

[16]  A. Sfondrini,et al.  Tessellating cushions: four-point functions in N$$ \mathcal{N} $$ = 4 SYM , 2016, 1611.05436.

[17]  B. Eden Tessellating cushions: four-point functions in N = 4 SYM , 2017 .

[18]  L. Alday,et al.  Loops in AdS from conformal field theory , 2016, 1612.03891.

[19]  S. Komatsu,et al.  Hexagonalization of correlation functions , 2016, 1611.05577.

[20]  J. Maldacena,et al.  Looking for a bulk point , 2015, 1509.03612.

[21]  P. Vieira,et al.  Structure Constants and Integrable Bootstrap in Planar N=4 SYM Theory , 2015, 1505.06745.

[22]  V. Kazakov,et al.  Quantum spectral curve for arbitrary state/operator in AdS5/CFT4 , 2014, 1405.4857.

[23]  V. Kazakov,et al.  Quantum spectral curve for planar N=4 super-Yang-Mills theory. , 2014, Physical review letters.

[24]  P. Vieira,et al.  Spacetime and flux tube S-matrices at finite coupling for N=4 supersymmetric Yang-Mills theory. , 2013, Physical review letters.

[25]  E. Witten Superstring Perturbation Theory Revisited , 2012, 1209.5461.

[26]  G. Kemp,et al.  Nonplanar integrability at two loops , 2012, 1206.0813.

[27]  Rafael I. Nepomechie,et al.  Review of AdS/CFT Integrability: An Overview , 2010, Letters in Mathematical Physics.

[28]  Charlotte Kristjansen Review of AdS/CFT Integrability, Chapter IV.1: Aspects of Non-Planarity , 2010, 1012.3997.

[29]  R. Janik,et al.  Review of AdS/CFT Integrability , 2011 .

[30]  R. Koch,et al.  NONPLANAR INTEGRABILITY: BEYOND THE SU(2) SECTOR , 2011, 1106.2483.

[31]  Hai Lin,et al.  Nonplanar integrability , 2011, 1101.5404.

[32]  J. Polchinski,et al.  Holography from Conformal Field Theory , 2009, 0907.0151.

[33]  R. Ricci,et al.  Dual superconformal symmetry from AdS5xS5 superstring integrability , 2008, 0807.3228.

[34]  J. Maldacena,et al.  Fermionic T-Duality, Dual Superconformal Symmetry, and the Amplitude/Wilson Loop Connection , 2008, 0807.3196.

[35]  J. Cardy,et al.  Form Factors of Branch-Point Twist Fields in Quantum Integrable Models and Entanglement Entropy , 2007, 0706.3384.

[36]  R. Roiban THE HIDDEN SYMMETRIES OF THE ADS5 × S5 SUPERSTRING , 2004 .

[37]  E. Sokatchev,et al.  Four-point correlators of BPS operators in N = 4 SYM at order g 4 , 2003, hep-th/0305060.

[38]  M. Staudacher,et al.  The dilatation operator of conformal N=4 super-Yang–Mills theory , 2003, hep-th/0303060.

[39]  E. Sokatchev,et al.  On a Large N Degeneracy in N = 4 SYM and the AdS/CFT Correspondence , 2003, hep-th/0301058.

[40]  J. Minahan,et al.  The Bethe-ansatz for N = 4 super Yang-Mills , 2002, hep-th/0212208.

[41]  L. Chekhov Matrix Models and Geometry of Moduli Spaces , 1995 .