MHC class II proteins and disease: a structural perspective

MHC class II molecules on the surface of antigen-presenting cells display a range of peptides for recognition by the T-cell receptors of CD4+ T helper cells. Therefore, MHC class II molecules are central to effective adaptive immune responses, but conversely, genetic and epidemiological data have implicated these molecules in the pathogenesis of autoimmune diseases. Indeed, the strength of the associations between particular MHC class II alleles and disease render them the main genetic risk factors for autoimmune disorders such as type 1 diabetes. Here, we discuss the insights that the crystal structures of MHC class II molecules provide into the molecular mechanisms by which sequence polymorphisms might contribute to disease susceptibility.

[1]  C Oseroff,et al.  Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones , 1994, The Journal of experimental medicine.

[2]  P. Gregersen,et al.  The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. , 1987, Arthritis and rheumatism.

[3]  M. Weinblatt,et al.  Rheumatoid arthritis. , 2001, Lancet.

[4]  Arne Svejgaard,et al.  A functional and structural basis for TCR cross-reactivity in multiple sclerosis , 2002, Nature Immunology.

[5]  S. Paget,et al.  Predominantly T-cell infiltrate in rheumatoid synovial membranes. , 1975, The New England journal of medicine.

[6]  Roland Martin,et al.  Structure of a human autoimmune TCR bound to a myelin basic protein self‐peptide and a multiple sclerosis‐associated MHC class II molecule , 2005, The EMBO journal.

[7]  J. Noseworthy,et al.  Multiple sclerosis. , 2002, Annual review of medicine.

[8]  J. Todd,et al.  HLA-DQβ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus , 1987, Nature.

[9]  D. Fremont,et al.  Structures of an MHC Class II Molecule with Covalently Bound Single Peptides , 1996, Science.

[10]  T. Tanaka,et al.  Aspartic acid at position 57 of DQβ chain does not protect against Type 1 (insulin-dependent) diabetes mellitus in Japanese subjects , 1989, Diabetologia.

[11]  Zhaohui Qian,et al.  Arthritic Joints Collagen-Specific Cells and Their Presence in Long-Term Activation of Type II Model of Collagen-Induced Arthritis Reveals T Cell Response in the HLA-DR 1 Mouse Ex Vivo Characterization of the Autoimmune , 2005 .

[12]  J. Todd,et al.  A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and the structure of their proteins. , 2001, Human molecular genetics.

[13]  A. Sette,et al.  Cutting Edge: The Conversion of Arginine to Citrulline Allows for a High-Affinity Peptide Interaction with the Rheumatoid Arthritis-Associated HLA-DRB1*0401 MHC Class II Molecule1 , 2003, The Journal of Immunology.

[14]  S. Wassertheil-Smoller,et al.  A pilot trial of Cop 1 in exacerbating-remitting multiple sclerosis. , 1987, The New England journal of medicine.

[15]  Don C. Wiley,et al.  Crystal Structure of HLA-DR2 (DRA*0101, DRB1*1501) Complexed with a Peptide from Human Myelin Basic Protein , 1998, The Journal of experimental medicine.

[16]  Emmanuel Mignot,et al.  DQ (rather than DR) gene marks susceptibility to narcolepsy , 1992, The Lancet.

[17]  N Risch,et al.  Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. , 2001, American journal of human genetics.

[18]  Y. Iwamoto,et al.  Genetic analysis of HLA class II alleles and susceptibility to Type 1 (insulin-dependent) diabetes mellitus in Japanese subjects , 1992, Diabetologia.

[19]  Lars Fugger,et al.  Specificity of an HLA‐DRB1*0401‐restricted T cell response to type II collagen , 1996, European journal of immunology.

[20]  J. Todd,et al.  Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. , 2001, Immunity.

[21]  R. Karr,et al.  Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association , 1995, The Journal of experimental medicine.

[22]  Arne Svejgaard,et al.  Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  E. Thorsby,et al.  T cells from the small intestinal mucosa of a DR4, DQ7/DR4, DQ8 celiac disease patient preferentially recognize gliadin when presented by DQ8. , 1994, Human immunology.

[24]  A. Woods,et al.  An HLA-DR1 Transgene Confers Susceptibility to Collagen-induced Arthritis Elicited with Human Type II Collagen , 1997, The Journal of experimental medicine.

[25]  James J Walters,et al.  Natural peptides selected by diabetogenic DQ8 and murine I-A(g7) molecules show common sequence specificity. , 2005, The Journal of clinical investigation.

[26]  Don C. Wiley,et al.  Complexed with a Peptide from Human Myelin Basic Protein , 1998 .

[27]  Don C. Wiley,et al.  Structure of a Complex of the Human α/β T Cell Receptor (TCR) HA1.7, Influenza Hemagglutinin Peptide, and Major Histocompatibility Complex Class II Molecule, HLA-DR4 (DRA0101 and DRB10401) , 2002, The Journal of experimental medicine.

[28]  E. Bergseng,et al.  Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Jennifer Maynard,et al.  Structure of an autoimmune T cell receptor complexed with class II peptide-MHC: insights into MHC bias and antigen specificity. , 2005, Immunity.

[30]  J. Mussini,et al.  [Immunology of multiple sclerosis]. , 1982, La semaine des hopitaux : organe fonde par l'Association d'enseignement medical des hopitaux de Paris.

[31]  H. Rammensee,et al.  Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. , 1994, Journal of immunology.

[32]  Don C. Wiley,et al.  Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide , 1994, Nature.

[33]  Richard J Farrell,et al.  Celiac sprue. , 2002, The New England journal of medicine.

[34]  F. Sinigaglia,et al.  Identification of a motif for HLA-DR1 binding peptides using M13 display libraries , 1992, The Journal of experimental medicine.

[35]  E. Bergseng,et al.  Refining the Rules of Gliadin T Cell Epitope Binding to the Disease-Associated DQ2 Molecule in Celiac Disease: Importance of Proline Spacing and Glutamine Deamidation1 , 2005, The Journal of Immunology.

[36]  M. Dougados,et al.  Treatment of Rheumatoid Arthritis by Selective Inhibition of T-Cell Activation with Fusion Protein CTLA 4 Ig , 2003 .

[37]  R B Smith,et al.  Insulin dependent diabetes mellitus. , 1992, The New Zealand medical journal.

[38]  D. Hafler,et al.  Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope , 2005, Nature.

[39]  R. Jonsson,et al.  A novel NOD-derived murine model of primary Sjögren's syndrome. , 1998, Arthritis and rheumatism.

[40]  Jan Engberg,et al.  Visualization of Myelin Basic Protein (Mbp) T Cell Epitopes in Multiple Sclerosis Lesions Using a Monoclonal Antibody Specific for the Human Histocompatibility Leukocyte Antigen (Hla)-Dr2–Mbp 85–99 Complex , 2000, The Journal of experimental medicine.

[41]  O. Schueler‐Furman,et al.  Examination of possible structural constraints of MHC‐binding peptides by assessment of their native structure within their source proteins , 2001, Proteins.

[42]  P. Stastny Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. , 1978, The New England journal of medicine.

[43]  E. Thorsby,et al.  Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer , 1989, The Journal of experimental medicine.

[44]  E. Mignot,et al.  Genetic and familial aspects of narcolepsy , 1998, Neurology.

[45]  M. Dougados,et al.  Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. , 2003, The New England journal of medicine.

[46]  D. Zaller,et al.  Prediction of peptide affinity to HLA DRB1*0401. , 1994, International archives of allergy and immunology.

[47]  A. Woods,et al.  An HLA-DR 1 Transgene Confers Susceptibility to Collagen-induced Arthritis Elicited with Human Type II Collagen , 1997 .

[48]  R. Karr,et al.  Structural basis for major histocompatibility complex (MHC)-linked susceptibility to autoimmunity: charged residues of a single MHC binding pocket confer selective presentation of self-peptides in pemphigus vulgaris. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Don C. Wiley,et al.  Structure of a human insulin peptide–HLA-DQ8 complex and susceptibility to type 1 diabetes , 2001, Nature Immunology.

[50]  E. Unanue,et al.  Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. , 2000, Immunity.

[51]  L. Fugger,et al.  Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease , 1998, Nature Medicine.

[52]  J. Hillert,et al.  The multiple sclerosis- and narcolepsy-associated HLA class II haplotype includes the DRB5*0101 allele. , 1995, Tissue antigens.

[53]  Derin B Keskin,et al.  Peptide 15-mers of defined sequence that substitute for random amino acid copolymers in amelioration of experimental autoimmune encephalomyelitis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D I Stuart,et al.  Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 A. , 1979, Journal of molecular biology.

[55]  J. D. Capra,et al.  Analysis of HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus. , 1990, The New England journal of medicine.

[56]  W. Kwok,et al.  Insulin-Dependent Diabetes Mellitus Molecule Associated with Dominant Protection in MHCHLA-DQA 1 * 0102 / DQB 1 * 0602 , the Class II A Peptide Binding Motif for , 1998 .

[57]  L. Fugger,et al.  Definition of MHC and T cell receptor contacts in the HLA-DR4restricted immunodominant epitope in type II collagen and characterization of collagen-induced arthritis in HLA-DR4 and human CD4 transgenic mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Ian A Wilson,et al.  Crystal structure of MHC class II I-Ab in complex with a human CLIP peptide: prediction of an I-Ab peptide-binding motif. , 2003, Journal of molecular biology.

[59]  P. Roepstorff,et al.  The Intestinal T Cell Response to α-Gliadin in Adult Celiac Disease Is Focused on a Single Deamidated Glutamine Targeted by Tissue Transglutaminase , 2000, The Journal of experimental medicine.

[60]  K. Garcia,et al.  A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. , 2000, Science.

[61]  Sebastiaan Overeem,et al.  A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains , 2000, Nature Medicine.

[62]  L. Fugger,et al.  Tracking of Proinflammatory Collagen-Specific T Cells in Early and Late Collagen-Induced Arthritis in Humanized Mice1 , 2004, The Journal of Immunology.

[63]  E. Thorsby,et al.  Gliadin-specific, HLA-DQ(alpha 1*0501,beta 1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients , 1993, The Journal of experimental medicine.

[64]  D. Zaller,et al.  X-ray crystal structure of HLA-DR4 (DRA*0101, DRB1*0401) complexed with a peptide from human collagen II. , 1997, Immunity.

[65]  L. Fugger,et al.  A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor , 1999, Nature Genetics.

[66]  F. Koning,et al.  Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. , 1998, Journal of immunology.

[67]  M. Atkinson,et al.  Type 1 diabetes: new perspectives on disease pathogenesis and treatment , 2001, The Lancet.

[68]  Sebastiaan Overeem,et al.  Hypocretin (orexin) deficiency in human narcolepsy , 2000, The Lancet.

[69]  E. Mignot,et al.  Clinical aspects of narcolepsy-cataplexy across ethnic groups. , 2002, Sleep.

[70]  Silke Schmidt,et al.  Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. , 2004, American journal of human genetics.

[71]  A. Begovich,et al.  Selection for T-cell receptor Vβ–Dβ–Jβ gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis , 1993, Nature.

[72]  K. Wucherpfennig,et al.  Unconventional topology of self peptide–major histocompatibility complex binding by a human autoimmune T cell receptor , 2005, Nature Immunology.

[73]  D. Wiley,et al.  Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1 , 1993, Nature.

[74]  R. Mariuzza,et al.  Structural basis for the binding of an immunodominant peptide from myelin basic protein in different registers by two HLA-DR2 proteins. , 2000, Journal of molecular biology.

[75]  Emmanuel Mignot,et al.  The role of hypocretins (orexins) in sleep regulation and narcolepsy. , 2002, Annual review of neuroscience.